Minemu: The World’'s Fastest Taint Tracker

Erik Bosman, Asia Slowinska, and Herbert Bos

Vrije Universiteit Amsterdam

Abstract. Dynamic taint analysis is a powerful technique to detect memory cor-
ruption attacks. However, with typical overheads of an order of madgmijtour-

rent implementations are not suitable for most production systems.eEeanch
question we address in this paper is whether the slow-down is a funddmenta
speed barrier, or an artifact of bolting information flow tracking on etoutare-

ally not designed for it. In other words, we designed a new type of entitaio
scratch with the goal of removing superfluous instructions to propagateTae
results are very promising. The emulator, knowréisemy incurs a slowdown

of 1.5x-3x for real and complex applications and 2.4x for SPEC 100& while
tracking taint at byte level granularitylinemus performance is significantly bet-

ter than that of existing systems, despite the fact that we have not appiez s

of their optimizations yet. We believe that the new design may be suitable for
certain classes of applications in production systems.

Keywords: dynamic taint tracking, JIT compilation, intrusion detection

1 Introduction

Fifteen years after Aleph One’s introduction to memory gption [17], and despite a
plethora of counter-measures (like ASLR [3], PaX/DEP [E8i¢d canaries [7]), buffer
overflows alone rank third in the CWE SANS top 25 most dangesofisvare errors
Dynamic taint analysis (DTA) [16, 6] is very effective at gng most memory corrup-
tion attacks that divert a program’s control flow. Moreovbe wealth of information
it collects about untrusted data makes it well-suited foelsics and signature gener-
ation [26]. Unfortunately, software DTA is so slow that imaptice its use is limited to
non-production machines like honeypots or malware arabsgines.

In this paper, we describdinemuy a new emulator architecture that speeds up dy-
namic taint analysis by an order of magnitude compared tb-kmghwvn taint systems
like taint-check [16], Vigilante [6], and Argos [20]. Spécally, Minemubrings down
the slowdown due to taint analysis to 1.5x-3x for real aggtians. Unless your applica-
tion really starves for performance, a slowdown of, sayose safe from most memory
corruption attacks might be a reasonable price for manyrggaensitive systems.

Current counter measures do not stop memory corruption. Typical memory corruption
attacks overwrite a critical value in memory to divert a peog’s flow of control to
code injected or selected by the attacker. We argue thagmuprotection mechanisms
(like PAX/DEP, ASLR, and canaries) are insufficient. Coesifbr instance, the buffer

! Version 2.0, 2010t t p: / / www. sans. or g/ t op25- sof t war e- error s/

underrun vulnerability in Figure 1. The example is from a V8ebver request parsing
procedure imgi nx- 0. 6. 32 [1]—in terms of market share across the million busi-
est sites, the third largest Web server in the wirttbsting about 23 million domains
worldwide at the time of writing. The buffer underrun alloattackers to execute arbi-
trary programs on the system. They do not trample over camarhey do not execute
code in the data segment. Since they call into libc, they arstopped by ASLR either.

In reality, the situation is worse. All defense mechanis®sduin practice, includ-
ing the three above, have weaknesses that allow attackenctonvent them, and/or
situations in which they cannot be applied (e.g., JIT coatpires data pages to be
executable). Moreover, a recent report indicates that npamgrams either do not use
features like DEP or ASLR at all, or use them incorrectly [ZShally, legacy binaries
often cannot even be protected using such measures.

Dynamic Taint Analysis (DTA) is one of the few techniques that protect legacy besri
against all memory corruption attacks on control data. Bseeof its accuracy, the
technique is very popular in the systems and security contgwitness a string
of publications in the last few years in tier-1 venues, idalg SOSP [6], CCS [30],
NDSS [16], ISCA [9], MICRO [8], EUROSYS [20], ASPLOS [28], EEIX [5,12],
USENIX Security [29], Security& Privacy [24], and OSDI [13]t is clearly well liked.

Frustratingly though, DTA is too slow to be used in produttsystems. In practice,
its use is limited to non-production machines like honegpmt malware analysis en-
gines. With slow-downs that often exceed an order of magdaittew are keen to apply
taint analysis to, say, their webserver or browser.

Contributions The research question we address in this paper is whethesidhe
down is a fundamental performance barrier, or an artifadiadfing information flow
tracking on emulators not designed for it? To answer thistjoe, we designed a new
emulator architecture for theg86 architecture from scratch—with the sole purpose of
minimizing the instructions needed to propagate taint. @inelator,Minemu reduces
the slowdown of DTA in most real applications to a factor ¢ fo 3. It is significantly
faster than existing solutions, even though we have notiegpgome of their most
significant optimizations yet. We believe that the new desigy be suitable for certain
classes of applications in production systems.

Specifically, what we did not do is rely on static analysisptimciple, it is possible
to improve performance by means of statically analyzingghegram to determine
which instructions need taint tracking and which do not. d&Jtnfnately, static analysis
and even static disassembly of stripped binaries is stiliresolved problem. Therefore,
the authors of the best-known work in this category [23]ueass the presence of at
least some symbolic information (like the entry points afidtions). In practice, this
is typically not available. In fact, we do not even check ain@nmic) translation time
whether the data is tainted (whether we could follow a fasth)pas proposed by the
authors of LIFT [22]. In LIFT terminologyMinemualways takes the slow path. As a
result, Minemus performance is independent of the amount of taint in tipes.

2 htt p:// news. netcraft.conl archives/ 2011/ 03/ 09/ mar ch- 2011- web- server - survey. ht m #
nmor e- 3991

We show that, despite not using these optimization tectesiund using pure dy-
namic translationMinemus performance exceeds that of even the fastest existing sys
tems [23, 22, 14].

The first key observation underlyinginemuis that fast DTA requires a fast emula-
tor. Thus, we designed a new and highly efficie®® emulator from scratch. Compared
to other emulators like QEMU [2]Minemutranslates much larger blocks in one go.
Additionally, the emulator applies caching aggressivalptighout the system. While
the emulator is fast, we do not claim it is the fastest in theldvorhere are several
optimizations left that we have not yet applied. For inserstarDBT is reportedly
faster [22]. However, by design our emulator is very amemé&bhrbitrary dynamic in-
strumentation in general and taint analysis in partictlae design of the emulator is
our first contribution.

The second key observation is that current DTA approachesxgensive mainly
because they need many additional instructions to propagatt. For instance, every
mov andadd incurs substantial overhealinemureduces the number of these addi-
tional instructions at all cost—sacrificing memory for spgédeed be. Thus, by care-
fully designing the memory layouMinemupropagates taint at a cost of 1-3 additional
instructions. The novel memory layout is our second couatidin.

A third key observation is that many additional instruci@me due to register pres-
sure in general and tracking taint in registers in particditaus, we use SSE registers
to track the taint for the processor’s general purpose tegis-greatly speeding up the
taint analysis. Our use of SSE registers is a third coninbut

Because oMinemus design, the overhead of the taint tracker relative to thee
lator is considerably lower than that of other systems, ¢lrengh we did not yet apply
any analysis to prune the taint propagation. Because qf Mireemus overall perfor-
mance is also better than that of existing systems, destiact that some have faster
emulators [22].

Design issues aside, the concrete outcomes contributddsdpaper are a very fast
DTA emulator based on these insights. The emulator provadesndbox from which
an application cannot escape and offers taint trackingeabitte level. We evaluated
the design elaborately with a host of real-world and comglpglications Apache,

I i ghttpd, connectionsPHP, Post greSQL, etc.), as well as SPECint 2006 bench-
marks. For all real applications, the slowdown was alwags tean 3x. Often less than
2x. Only one of the SPECint 2006 benchmarks incurred a slamdyreater than 4x,
while the overall slowdown across the entire benchmarlesués 2.4x.

Minemuisreal Minemufor Linux is available fromht t ps: / / www. mi nenu. or g.
Interested users can install it today to protect missidicatiapplications (likeApache,
Post greSQ, orl i ght t pd) as well as an endless chain of other UNIX tools and shells.
To demonstrate the practicality of our emulator, Mimemusite (i ght t pd, php, and
Post gr eSQL) itself also runs on th&linemuemulator. Moreover, it provides access to
a vulnerablePr oFTPD server, running oiinemuy that we encourage readers to attack.
In the remainder of this paper, we discuss the design anemmgahtation oMinemu
for Linux on 32-bitx86. As Minemudoes not rely on Linux-specific properties, except
the size of the address space, porting the design to Windowsgdbe straightforward.
We also discuss how the design applies to 64-bit systems.

A buffer underrun vulnerability in Ngi nx

Ngi nx is a web server—in terms of market share across

the million busiest sites, the third largest Web server in e
the world. At the time of writing, it hosts about 23 million data @
domains worldwide. Versions prior to 0.6.38 had a partic- ctx

ularly nasty vulnerability.

When Ngi nx receives an HTTP request, it iy
calls ngx_http_parse_conpl ex.uri with an the attacker
ngx_htt p_request t structure@. dat a points to a filter_ctx | ro0 meec(®)
buffer, in which the current routine will store a normalized 0] T S p
uri path (), while ct x points to an array of pointers to
various context structure®) and @. These two buffers @
happen to be adjacent in memory. The parsing function g ctx_pointer
copies the uri path talat a, normalizing it at the same ©
time. When provided with a carefully crafted path, nginx
wrongly computes its beginning, settingata to a S
location below the start of the uri query—somewhere in
the buffer underneath it. Next, the user provided query is (@

copied to the location pointed to lhat a (&.

Thus, a pointer to a context structurgx_out put _chai n_ct x_t (ct x_poi nt er) is over-
written with a value coming from the netwo@®). This structure contains a pointer to a function
(out put _fi | ter),whichwill eventually be called bi¥gi nx. By overwritingct x_poi nt er
with a value that points to an attacker controlled buffer, an attacker cotfefsinction pointer,
enabling him to load it with the address of tagec function in libc). An adjacent field con-
tains a pointer to this function argumeirfti (t er _ct x), again controlled by the attacké&.
When the function is called, a new program will be executed - picked bytthekar.

Observe that in the above example no code executes in the data segmieBRAMDX will
not help. Moreover, the attack corrupts no canary value, and as theetgxent is typically not
randomized, ASLR does not stop the attack either.

Fig. 1. A vulnerability in Nginx: DEP, ASLR, and canaries do not stop the attack

2 A new emulator design for fast taint tracking

Minemuis a lightweight process-level emulator designed withttaimalysis in mind
for the x86 architecture to protect vulnerable Linux applicationscéffitly, without
special privileges or kernel extensiofginemuruns standard86 instructions, so that
the application can be written in any language, includirggatbly.

Attack detection inMinemu works just like in other DTA approaches, and taint
propagation occurs directly or86 instructions Minemupropagates taint as it is copied
through, or used as source operand in ALU operations. Irtiaddit instruments the
cal I, ret andj np instructions to raise an alert when a tainted value is loaal&t P.
Check [20] for the details of the taint propagation rulessthechanism lets us detect a
broad range of all memory corruption attacks. To deal algh eode-injection attacks,

which do not need to overwrite critical values with netwoikta we have extended
Minemuto check that the memory location loaded®rP is not tainted.

translate add tainting
large chunks JIT‘ instrumentation fexecyte until emulator
compiler encounters code not

yet translated

unmodified DTA-enhanced] o
code if instruction code - cached translation

not yet translated - SSE registers
V - memory layout

Fig. 2. Minemu—high-level overview.

Figure 2illustrates the big picture. We see that at a hightlef abstractionMinemu
is just like other dynamic translators in that it employsBddmpiler and caches to em-
ulate the underlying processor efficiently. Since the etedlarocessor is at86 itself,
Minemuwill execute as much of the code as possible natively. Whendiremuen-
counters an instruction that it has not yet translated tihies a large chunk of code to
translate it in one go. It resolves all simple branches watigetts in the chunk itself,
while ensuring that for complicated cases (such as indbesmiches), control returns
to the JIT compiler. InitiallyMinemuhas not yet translated any instruction, so the first
thing it does is translate a maximum sized chunk of instomsti—translating until it
either reaches the end of the memory area, or encountelegal ihstruction. The size
of the translation block is much greater than that of otheli-lieown emulators like
QEMU. The translation process also augments the origirde eath DTA. By caching
aggressivelyMinemu minimizes the overhead of recompilation. Moreover, by gsin
SSE registers instead of the normal general purpose regyfstetainting, it alleviates
the register pressure that might otherwise occur due to Birfally, the memory layout
is especially crafted to make it cheap to propagate tairtedaint map. We discuss all
of these aspects in detail in the remaining sections.

Besides dynamic taint analysis (DTA), effective protectmainst exploits requires
the emulator to provide sandboxing of data and code. Spaltyfigt must confine
memory accesses of the emulated process to a desighatedrynesgion, to protect
Minemus sensitive data (e.g., the internal data structures antlalues). Similarly,
we cannot let the emulated process escape the controllé@dement.

In this Section, we discuss the overall design of Mieemuemulator, and we con-
tinue with the dynamic taint analysis part in Section 3.

2.1 Memory layout

To provide an effective sandbox and implement taint propagan an efficient way,
Minemureorganizes the emulated process’ address space.

Figure 3a shows thadlinemudivides a process’ memory into a number of sections.
First, an emulated process can only use memory within onégeaus block which
starts at the lowest mappable addraser(memory). It has a size of almost a third of
the whole address space. Further, sibtieemukeeps a one byte taint tag for every byte

linux kernel memory
0x%c0000000 reserved memory

RM =v— [SM] shadow memory
Il runtime & JIT code
[l runtime R/W memory
[OM] user memory

+— 32-bit TAINT_OFFSET
um H <4==# memory chunk length

[inaccessible memory

%, [accessible memory

‘l_ <+ 32-bit TAINT_OFFSET

i «==+memory chunk length

;I oe— memory accessed by
the emulated process
paired with the access
in the tainted instruction

SM

[T
|

(a) (b)

Fig. 3. The figure on the left shows the different sections that make up thessldpace of an
emulated process, while the figure on the right represents the samesadgace as a circular
buffer. As all pointed arcs inside the grey disc have the same anglergpegsent a constant
offset. So the offset from the start of UM to the start of SM is equal to fif@ebfrom the
start of RM to the start of UM, etc. We call this distarit&l NT_OFFSET. Emulated processes
can access the dark grey chunks, but an access to a light grey chusés a protection error.
Whenever a process writes to an addregglinemuadds an instruction to update the taint value
in p+TAI NT_OFFSET—making taint propagation cheap. Suppose a malicious process tries to
clean the taint at addregs+ TAl NT_OFFSET. Again, during the translatioMinemuadds an
instruction to update the taint value (@t+TAI NT_OFFSET)+TAI NT_OFFSET. However, this
address is in a protected area (LK) and any attempt to access it leadsdteetipn error. All
sensitive areas are protected in this way—if the process tries to acaéegammemory location,
either the operation itself or its corresponding taint propagation instructioses a page fault.

of the emulated process memory, it reserves a chunk of the s@ma for theshadow
memory to store the taint map. In between these chunks, we reserie seemory
for the translated JIT code ardinemuitself (runtime & JIT code), and finally some
runtime read/writable datayntime R/W memory). We call the distance between the
beginnings of the user and the shadow memory chiiAksIT_OFFSET.

Minemuleaves the two final chunks of the address spesserfved andLinux kernel
memory) unused. All memory accesses in these regions generatéegiioa fault. The
combined size of LK and RM is exactilyAl NT_OFFSET. We will show that reserving
this memory and mapping it unreadable allows to run withawt laoundary checks
during emulation. Also, since Linux on the i386 already usegiarter of the address
space for itself, we only reserve/waste a small amount of omgitthe RM chunk).

While TaintTrace [4] also uses a constant offset for the sivademory, our layout
additonally makes it possible to ruviinemuwithout boundary checks during emula-
tion, and still confine memory accesses by an emulated paceser memory (UM).

2.2 Data sandboxing

The memory layout gives each address in user memory a mgteh&in shadow mem-
ory and the distance between them is equalAbNT_OFFSET. During the translation,
for each memory access by an emulated proddsgmuadds exactly one correspond-
ing memory access which propagates taint to and from theoghademory. Thus,
taint propagation is extremely cheap, as it mainly cong$tan instruction access-
ing memory at a constant offset relative to the original mgnhacation. For example,
just before an access {Geax) , it inserts an instruction to propagate taint, accessing

($eax+di sp32(TAI NT_OFFSET)) . Similarly, it couples gush instruction with an
access tq $esp+di sp32(TAl NT_.OFFSET-4)).

For data sandboxing, we must confine memory accesses by datedhprocess to
user memory (UM). Figure 3b shows that when a regular instm@ccesses UM, its
corresponding taint propagation instruction automdiicatcesses the corresponding
location in shadow memory. Indeed, both operations accesaary in theaccessi-
ble sections. However, if a regular instruction tries to matapione of the forbidden
chunks (the runtime R/W memory, the runtime & JIT code, orshadow memory di-
rectly), the inserted taint propagation instruction witass one of the protected parts
of the address space and generate a protection fault. Ing=&lp these illegal accesses
are illustrated with arrows having at least one of its endanimaccessible light grey
chunk. All illegal memory accesses result in page faultshezibecause of the instruc-
tion itself or because of the corresponding taint propagatiperation.

2.3 Code sandboxing

Minemuis an emulator using fully dynamic just-in-time (JIT) corapion. When a
guest process tries to execute an instructMimemutranslates the code starting at this
instruction to produce an equivalent code fragment entthagth taint tracking. Fi-
nally, Minemujumps to the translated code. After executing, controlrrettioMinemu

to either locate the next batch of instructions in the caoh&anslate them afresh.

(] [H]
= e
A . newaddr 4
N ; [
. r’ @» jj:_@' @> @» . 3 / execute
jmp_cache K jmp_cache !
[xec [| guest D
1 == new chun I
codemap JIT compilation codemap

Fig. 4. Minemutranslation mechanism.

Translation mechanism Figure 4 sketches the code translation procedure. The key
steps are cache lookup, used to check whether a guest pasissddress has been
translated before, and JIT compilation, invoked in the cdsecache miss in order to
translate a new code chunk. We describe each step belowdiyrgethe wayMinemu
starts executing code that it has not seen before.

In the first step(d), a guest process jumps to a guest code addkeddinemu
searches for a translated chunk corresponding. tih first performs a lookup in the
fast cachej np_cache (2—a hashtable to map jump targets in an emulated process
to corresponding addresses in the translated code. 3imas not translated before,
there is a cache miss, atWinemuexamines the second tabtemdenap (3. This table
contains one row per memory mapped#p’ed) executable region, and it stores infor-
mation about translated chunks of a corresponding birldiyemu checks whethea

belongs to one of the already translated code chunks. It $ods the address corre-
sponding toA, and inserts a new entry in thep_cache. In our scenario, however, we
assume another cache miss.

Now the JIT compilation process star@®. Unlike Qemu, fastBT [19] or HD-
Trans [27],Minemu does not translate small blocks of code. Instead, it keepsygo
until it encounters an illegal instruction or the end of theap’ed region. Minemu
translates from the guest code addesmwards.

When the JIT compiler hits a direct or relative jump instratiit adds it to a set of
to_be_resolved_jumps, and continues with the translati@). In Figure 4, the guest code
chunk has two jumps, indicated with little arrows. Thigsbe_resolved_jumps contains
two elements, depicted as black rectangles in the new chunk.

Once the translation of a chunk of code is compl#@emuexamines which jump
targets in theo_be_resolved_jumps set can be resolved immediatelg). Basically, the
JIT compiler determines new jump targets in the translatete dor all direct and rel-
ative jumps to the samemap’ed executable region. The rare case of relative jumps
across separatelyrap’ed sections of a binary is handled separately, but the espla
tion is beyond the scope of this papktinemuresolves indirect jumps at runtime. Once
hit by an emulated process, they pass the control badkitemu The emulator han-
dles such jump targets in exactly the same way as the addiessigure 4.Minemu
searches the code cache, and provides an appropriatateghshunk to be executed.

When JIT compilation is finishedinemuinserts the newly translated code chunk
to bothj np_cache andcodemap (7). Finally, it starts the executio@.

Additional optimizations To further improve performance, we added a few additional
optimizations. The main ones include translated code amndreaching.

Translated code caching An optional file-backed caching mechanism can store the
translated code. When the executable files of an emulatedgs@re mapped at exactly
the same locations as in a previous run of the program, thishamsm allows for
reusing code chunks translated earlier. Doing so speedsagugms by eliminating
double work. Note however, that we cannot use this optingrahn the presence of
address space layout randomization.

Return caching Ther et instruction is the most common form of an indirect jump.
To improve performancéviinemuexploits the protocol between tlal | andr et in-
structions. Whenever the program executesld , we can expect a correspondinet
instruction jumping to the program counter following th&l | instruction. Since the
trandated return address is known at compile time, the JIT compilepgrinserts the
right mapping tg np_cache. If necessary latelMinemuis able to retrieve it quickly,
without performing a lookup in theodenap cache.

2.4 System calls

Minemu catches all system calls and wraps them to return the coffdrwlto trans-
lated code once the execution has completed. Some of thamreexgpecial handling

by the emulator. For example, when the emulated progrankéssomap to allocate
new executable memory pagddinemuexamines the translated code cache and invali-
dates entries in this memory region. Specific system calis,reead are marked as the
sources of taint (e.g., if an emulated process reads frontveonikesocket). It is easy to
change the sources of taint in case of different needs fornmdtion flow tracking.

2.5 Signal handling

Single instructions from the original program can becométipia instructions in the
translated JIT code. This can lead to the kernel deliverisigaal whileMinemuis in a
state the original program could never experience. Eslhetiaublesome is the jump
cache [np_cache). If a signal happens in the midst of writing a jump mappin@tw
cache and the emulated program’s signal handler would imésenwhile look up that
address, it could start executing the wrong code.

In order to solve this problem we have implemented a wrapemal signals which
allows us to guarantee that signals always get to see a temiss¢ate, as if the program
were run natively. The emulator’'s signal handler uses arradte stack so as not to
disturb any user memory. When a signal comes in, the signalléachecks whether
the instruction pointer is between translated instructitiat belong to the same original
instruction, and whether it is in runtime code.

If the instruction pointer is in the midst of executing an éated instruction, a
JIT translation for that single instruction is made and exed, returning to our signal
handler when it is done. In case the instruction pointer rsiirtime code or might jump
there, we temporarily replace the instruction at which th&@ime code jumps back into
the JIT code to one that returns to our signal handler.

When the emulator is in a consistent state again, a sighafsdate is copied from
the emulator’s alternative stack to user memory as if theddexrote it there. The orig-
inal stack frame is then modified to make it reflect the pramestte and signal mask
as it should be when delivering the user signal so that tHewaig call to sigreturn
will actually deliver the signal to the user process’ handle

2.6 Usage

Minemuis a process-based all-user-space emulator. Its invoc&isimilar to ex-
ecutable wrappers likei ce andstrace. Instead of executing the given program,
Minemuloads it in its own address space and starts emulating ievdaing taint track-
ing at the same time. Child processes and programs stagedviithin Minemuwill
also be emulated the same way. For instance, this is how widtsapache webserver:

.I'mnenu -cache /jitcache/ -dunp /mendunps/ /etc/init.d/ apache start

3 Register tagging in Minemu

Much of the overhead of earlier DTA systems (e.g., [16, 6) 288ms from the large
number of additional instructions needed to propagatd-tanot just for memory ac-
cesses, but also for the registers. Worse still, as theiadditinstructions require com-
putation to find the location of the taint tags, they typigallso increase the pressure

10

on thex86’s already scarce registers. While liveness analysis ostegi can mitigate
the problem [21], the overhead is still considerable.

By explicitly targeting thex86, Minemuis able to exploit architectural features to
reduce both the number of additional instructions and tQister pressure caused by the
instrumentation. Specificallyinemuuses SSE registers to hold the taint information
for the general purpose registers to minimize register pimgp As a result, the instruc-
tions in need of taint propagation, require as fewlas 3 extra instructions. In this
section, we discuss details bfinemus register tagging and taint tracking procedure.

128 bits 128 bits

Taint tracking:

— X _

t_eax = t_eax|t_ebx
xmm5 scratch register xmm5 | t_ebx 0 0 0 - - -
Instruction executed:
xmm6 [t eax|t_ecx|t_edx |t_ebx xmmé6 |t eax|t_ecx|t_edx |t_ebx
= = = = = = = = Xmm6 = xmmé6 | xmm5
xmm7 |t_esp|t_ebp|t_esi [t _edi xmm?7 [t_esp|t_ebp|t_esi|t_edi
(a) (b)

Fig.5. SSE registers used yinemu (a) Minemuuses three SSE registers to store taint tags of
the general purpose86 registerst _eax, t _ebx, and so on, denote taint tags associated with
the corresponding general purpose registers. (b) An example a#ge scratch register.

3.1 SSE registersused by Minemu

To minimize register swappindvinemuemulates a processor without SSE registers,
and uses instead three SSE registers to hold the taint iafmmfor the general purpose
registers. As shown in Figure 5a, two 128 bit registens andxm, hold taint values
for the eight general purpose registers. Both are concliygmit into four 32-bit parts,
and each of these holds the taint value for one of the generabpe registers. We name
the taint tage _eax, t _.ecx, and so onxnmb is used as an auxiliary buffer, and we
call it the scratch register. Note that register tagging iinemuis more fine-grained
than in most DTA implementations [16, 6, 20]: each individopte of a register has an
associated taint tag, instead of one tag per register.

3.2 Taint tracking

Taint propagation rules iMinemudo not differ from those of existing DTA engines.
We copy tags on data move operatioms,them onALU operations, and clean tags on
commoni a32 idioms to zero memory, such asr $eax, $eax.

What is distinctive abouMinemuis the way it tracks taint: it does so without swap-
ping outany registers. The reason is twofold. First, we use SSE registestore the
general purpose register tags. Second, we do not need twrmpeahy additional com-
putations to determine relevant addresses in the shadovorgefs a result, there is no
need to change (and thus to save and restore) the contergrexfdjpurpose registers.

11

As ALU operations are (slightly) more complicated than, sagves, we will use
them as an example. When the emulated process exesutesperations such as
add, sub, and or xor, Minemuinserts instructions to mark the destination operand
as tainted if at least one of the source operands is tainteel.tdgs are thusr 'ed.
Depending on the instruction performed by an emulated pmche destination of
a taint propagatiorr instruction inserted byMinemu can be either a register or a
memory location. For example, an instruction l#eax: =$eax+$ebx is coupled with
t _eax| =t _ebx, and($eax) : =($eax) +$ebx with menory_t ag($eax) | =t _ebx, i.e.,
($eax+TAI NT_OFFSET) | =t _ebx.

For efficiency reasons, we use the scratch register to taarifyostore one of the
arguments of the taint propagation operation. Since batbscare handled in a similar
fashion, let us assume the destination of the instructicm risgister. As depicted in
Figure 5b, we first load the taint value associated with thec@operand in the scratch
register, and place it in the part corresponding to the dastin register. The remaining
part of the scratch register is zeroed. Now, it suffices téoper anor operation on two
SSE registers: the scratch registen®t, and eithexnms or xrm¥. By usingxmmb as an
auxiliary buffer, we again manage to avoid swapping out ®al purpose registers.

3.3 Isit safetouse SSE registers?

Minemuemulates a processor without SSE registers and insteadhrsesSSE reg-
isters to hold the taint information for the general purposgisters. As not all 1A32
processors have SSE registers, compilers and softwargdists are often usually
very conservative about using them. Even when they are tiseds’s almost always
fallback code for processors that do not support it. If a pssdoes try to execute an
SSE instructionMinemucurrently generates an illegal instruction exception.r&lie
nothing fundamental about this, as it is possible to alsestede SSE instructions, by
swapping in the contents of the original registers when eégldowever, while we have
not measured it, it is quite likely that with the swapping ivaad, fallback code which
does not assume SSE instructions performs better.

4 Evaluation

We evaluate botiVinemueffectiveness in detecting attacks (Section 4.2) and ifepe
mance (Section 4.3). Besides our own measurements, we ceMijgagemuwith other
fast taint tracking tools (Section 4.4). We also want to rneenthat Minemuis robust.
All tested applications worked out of the box.

4.1 Test environment

Our test platform is a quad-core system with an Intel i5-750locked at 2.67GHz
with 256KB per-CPU cache and 8MB of shared cache. The systéds AG of DDR3-
1333 memory. For our performance tests we used a 32-bit D&bfU/Linux 6.0 in-
stall. Because of library dependencies, some of the oldeloi&s were tested using

12

Debian GNU/Linux 5.0 or a chrooted Ubuntu 6.06 base instédl.tested network ap-
plications over the local network loopback device so thatresults do not get skewed
by bandwidth limitations of the network hardware. We ranheagperiment multiple
times and present the median. Across all experiments, tie@centiles were typi-
cally within 10% and never more than 20% off the mean.

In our experiments we mark all input to an application astéainNote however,
that unlike the other fast tainting approaches ([22, 23, fat] Minemuthe amount of
taint does not change the performance at all.

4.2 Effectiveness

Table 1 shows the effectivenessMfnemuin detecting a wide range of real-life soft-
ware vulnerabilities that trigger arbitrary code executid/e mention that, due to the
reliability of DTA, Minemudid not generate any false positives during any of our exper-
iments. OverallMinemusuccessfully detects all attacks listed in Table 1. It spiuds
the program counter is affected by tainted input, and raseslert preventing the mali-
cious code from executing. Our evaluation shows WMetemudetects various types of
attacks in real-world scenarios. For example, the vulriktiab in Pr of t pd andCyr us

i mapd are exploited to overwrite the return address on the stadkalow remote at-
tackers to execute arbitrary code. For the 2846ba vulnerability, the attacker uses
a buffer overflow to overwrite a destructor callback funeti&orNgi nx, an underflow
bug on the heap allows attackers to modify a function poi@gexplained in Figure 1).
In Socat andTi pxd it is possible to control thént parameter to a call tepri nt f,
enabling the attacker to write to arbitrary locations in neeyr—in this case the return
address of a function call.

Application Vector| Vulnerability |Security adv. |[Application |Vector] Vulnerability |Security adv.

Snort 2.4.0 Remote Stack overflow] CVE-2005-3252 Aspell 0.50.5 Local | Stack overfloCVE-2004-0548
Cyrus imapd 2.3.[Remote Stack overflow CVE-2006-2502|Htget 0.93 | Local | Stack overfloyCVE-2004-0852
Samba 3.0.22 |Remote Heap overflow| CVE-2007-2446|Socat 1.4 | Local| Format string| CVE-2004-1484
Nginx 0.6.32 RemoteBuffer underrunCVE-2009-2629 Aeon 0.2a | Local|Stack overfloCVE-2005-1019
Proftpd 1.3.3a |Remote Stack overflow| CVE-2010-422)1Exim 4.41 | Local | Stack overfloEDB-ID#796

Samba 3.2.5 Remote Heap overflow| CVE-2010-2063 Htget 0.93 | Local |Stack overflo
B
fl

Ncompress 4.2.4| Local | Stack overflow] CVE-2001-1418 Tipxd 1.1.1 | Local| Format string| OSVDB-ID#12346
Iwconfig V.26 Local | Stack overflow| CVE-2003-094

Table 1. Tested control flow diversion vulnerabilities

4.3 Minemuperformance

We evaluate the performance dinemu with a variety of applications—all of the
SPECint 2006 benchmarks, and a wide range of real world anogir The slowdown
incurred for the SPECint 2006 benchmark is on average 2 He.sUite of tested real-
world applications, in addition to single programs suclyaisp and! i ght t pd, con-
tains an entire web stack serving over HTTPS. We show thataltie novel emulator
architecture, the slowdown incurred for these real-wodensirios is always less than

13

2.8x, with 1.6x forgzi p, and less than 1.5x for HTTP/ght t pd. In our opinion, the
results demonstrate the practicality of our emulator.

Figure 4.3 presents detailed results of our evaluation.yFéees of all graphs show
how many times slower a test was, compared with the sameutestatively. In order
to measure the overhead bfinemus binary translator, all of our measurements were
done both with and without taint tracking.

In addition to testing single applications, suchyasp, | i ght t pd, andApache, we
also tested an entire web stack serving over HTTPS. Forgkiswe chose a PHP-based
MediaWiki install running on i ght t pd andPost gr eSQL. For Apache, | i ght t pd
and the MediaWiki web stack we usadachebench, and we pinnedpachebench
to a different core than the webserver. For the web stack s@gdvePost gr eSQL a
separate core. Doing so decreases request times for bothtethend native runs and
reflects what real installations would do.

We observe that the slowdown incurred lbyght t pd serving HTTP is minimal,
always less than 1.5x, and decreasing with the size of a séquhis illustrates that
for 10-bound applications, like serving documents over ITthe cost of taint tracking
usingMinemuis minimal. In the case of HTTPS, the slowdown increases thi¢hsize
of a request, but is still less than 2.8x for large files.

We also ran the whole SPECint 2006 to see the effed#ioemuon applications
which do not spend a lot of time waiting for input. Because $itECint 2006 bench-
marks are CPU intensive, and spend most of their time doind é@mputations, we
expect these results to represent worst case scenariosrthigess, only one of the
SPECint 2006 benchmarks264r ef - performing video compression, incurred a slow-
down greater than 4x. Moreover, eight out of twelve benclancur a slowdown
ranging from 1.7x to 2.3x.

4.4 How does Minemucompareto related work?

In this section, we compare the performanceihemuwith three systems that are
the most relevant to our work, PTT [14], the dynamic taintkiag tool by Saxena et
al. [23], and LIFT [22]. We refrain from discussing the d&taf these projects until
Section 6 and focus on performance only. We will see Metemuoutperforms all. In
all graphs in this sectionVlinemuT, and MinemuNT denote the results d¥linemu
with- and without taint tracking, respectively.

PTT PTT [14]is a taint tracking system which, similarly to [18};namically switches
execution between a heavily instrumented QEMU and fast #epending on whether
tracking is required. As we shall see, even though PTT hasmums optimizations to
reduce the performance overhedinemuis much faster.

To evaluate the performance of PTT, its authors preseneé themchmarks: local
copy, compression and searching. Local copy involves capgf a 4 MB file using the
cp command, and compression - compressing a 4 MB file gitihp. As for search-
ing, thegr ep command is used to search the input data for a single word ifjhg
data setis a 100 MB text corpus spread across 100 equalfdemed-igure 7 compares
the slowdowns incurred by PTT, arMinemu Since thecp a- 4MB-fi |l e operation

14

HTTP Request times for static files

£ s
IS
2
- 2
(7]
N
| Ll e e T
- Wﬂlﬂﬂlﬂﬂl 1 Mﬂﬂmﬂﬂlﬂl
g 0 MY MY , MY MY MY <, MY
s L0k py M5 g s 0k Ypy M5 gy
Lighttpd Apache
HTTPS Request times for static files
£ s
IS
2
5 2
[T}
N
S 1R
LN il 1 i
2 o J J J J J
e oy o0, s e oy Yoo, s
Lighttpd Apache
Other applications
£ 3
5
=2
el
[T}
N
< 1
€
S
Z 0
gzip OpenSSH PostgreSQL MediaWiki MediaWiki
(scp+sshd) (pgbench) (HTTP) (HTTPS)
SPEC INT2006 results
5
Q
£ 4
IS
2
- 3
[T}
N
s 2 - R R 1
£
21 i
0

Yoo Y0;, Y03 o

C—— native

0, D265, P2, 0 g, oy Moy T2, %2
@r/b@%:/pe Co cr %,,7/r e, /@og "%e

. %93 O,

X 73, Y/
q, /7’/) 43/- e/fi'/; 4
s Sty b,
U, %

C— Minemu without taint tracking
mmmmm Minemu with taint tracking

Fig. 6. Overhead of emulation and taint-trackingMinemu compared to the native execution.

15

is dominated by the initialization time, we also presdinemu overhead for ap
a- 100MB- fi | e operation. We can see that in all casknemusignificantly outper-
forms PTT. Note, however, that PTT does full system emutatather than process
emulation.

- C—1 native -
—— Saxena-FP
mEmmm Saxena-T
=3 Minemu-NT
mmmm Minemu-T 7
|

:M' :

95 Dap S, U
7] e, ’77/)70 ‘7(4%6

1 native
m PTT
mmmmm Minemu-T

20

Normalized runtime

Normalized runtime
o B N W b~ O O
_—

92, Co._ ., g
» 4/148 1004480

Fig. 7. Comparison of performance Fig.8. Comparison of performance overhead

overhead incurred by PTT and incurred by Saxena et al. [23] ardinemu

Minemu gzi p andpar ser come from SPECint 2000,
amp, art andequake from SPECfp 2000.

Saxena et al. The fast taint tracking system by Saxena et al. [23] buildssimart
static analysis. This may be a problem, because as we diatissr in Section 6, the
information required by the static analysis is not alwayalable in practice.

To evaluate the performance of the system, the authors ratharreclectic mix
of ten SPEC benchmarks. As some of them are so old as to bedéndl {SPEC 92
and SPEC 95), we were not able to fully compM@memuwith [23]. Four of the ap-
plications evaluated in [23] are SPECfp benchmarks. Siflg fegisters are rarely, if
ever, involved in attacks, most taint tracking systemsluitiog Minemuand Saxena
et al. [23], ignore them by default. Thus, the overhead stenhgfrom theusual taint
tracking instructions, such as data movement, arithmetlogic instructions. For the
sake of comparison only, we presdriinemuresults for these applications as well.

Figure 8 compares slowdowns for the benchmarks which we haiable. The
results show the overhead of [23] in two cases, first, opghiaint-tracking (Saxena-
T), and secondastpath (Saxena-FP). Similar to LIFT, [23] also optionally implente
fastpath. Before executing a basic block it checks whether the datdvad is tainted or
not. If not, execution follows a fast binary version witha@uty information flow track-
ing. The authors of the system measured the performance déastpath and slowpath
code separately, where the fastpath results do not invalaéed data tracking. When-
ever we do have means for comparisinemuis significantly faster. Even with full
taint tracking,Minemuperforms better than the Fastpath version of [23].

LIFT LIFT [22] implements taint analysis in Intel's highly optired StarDBT binary
translator and applies three taint tracking performandémigations. We show that

16

although currenthyinemudoes not apply any of these optimizations, in most cases it
performs better. We also point out that the overhead addélddataint tracking relative
to the performance of the bare emulator is significantly lowehe case oMinemu

To evaluate the performance of LIFT, its authors measuredhioughput and re-
sponse time of thepache web server, and run 7 (out of 12) SPECint 2000 benchmarks.
Refer to Figure 9 for slowdown comparisons. The overall bgad incurred bWinemu
is much lower than that of LIFT withcc as the only exceptioMinemus performance
when runninggcc ranges from 2x to 3.9x\inemucompiles itself in about 2x native
on our Intel i5-750 CPU), and differs from system to systemtfe same program.
Since the performance is also poor fdinemuwithout taint analysis, it is not likely
to be caused by the working set not fitting into cache memoayh&, it is probably
an emulator problem. Other emulators, such as StarDBToparbetter on this bench-
mark. It shows that there is room for improvement in our ettulemplementation. We
also observe that even though StarDBT is mostly faster tbapure emulator, the taint
tracking mechanism implemented iinemuincurs less additional overhead.

| C— native
—— StarDBT
| o LIFT

= Minemu-NT
= Minemu-T

Normalized runtime
OFRNWAUIUITON®O

(2P 9 Wor 9o bz O Wy,
0, S Y r o g (=) 0, (o
Apache 1/9%0 /70,7&@ © e (2 4

4

Fig. 9. Comparison of performance overhead incurred by LIFT [22] ktdemu

5 Limitations and Futurework

Limitations Minemusuffers from the same drawbacks as most other DTA implemen-
tations: it does not track implicit flows, and it does not déteon-control data attacks.
In addition, Minemu consumes more memory than existing approaches. Extremely
memory-hungry applications may not be very suitableMimemuin its current form.
In the next section, we discuss how thnemuarchitecture applies to 64-bit architec-
tures with larger address spaces.

Also, Minemucurrently does not support self-modifying code. A possgaRition
is to use the write protection mechanism. Executable pagesarked unwritable, so
that whenever an emulated process modifies the original, dddeemu would take
control of the execution. By removing all entries which espond to the modified user
code page from the translated code cache, the new code withbslated by the JIT
compiler before the emulated process executes it. We l¢agdfuture work.

17

Finally, the current implementation does not work for apglions that insist on
using SSE instructions. However, we do not consider thisiddmental problem, as it
is straightforward to implement register swapping for theases.

Minemufor a 64-bit architecture Although our approach is particularly well suited for
32-bit x86 code, we believe we can make it work efficiently on 64x86 also. The
main obstacle is that while on a 32-bit system we can easdtepd that our emulated
CPU does not support SSE extensions, they come standardoib X®86. As a result,
any compiler is free to make use of them without any featuezkimg. Fortunately, the
latest Intel and AMD processors come with even wider veagisters suitable to hold
taint datd. However, because the lower 128 bits of these registers mtiqetold SSE
registers, we will need some swapping for lesser-usedtezgis

A second problem is that the 32-bit displacement in Intefidrassing mode used
for TAI NT_OFFSET is not large enough to hold the whole address space. This is no
problem as long as a program does not try to allocate corigecagions of memory of
more than 2G in size. By interleaving normal memory and sagemory in chunks
of 2G we can still use the same mechanism for tainting. If weatwa support more
than 2G of consecutive memory, the emulator should resameg(less-used) general
purpose register to hoffAl NT_OFFSET. Memory accesses which do not use base-index
addressing can be translated into a base-index addresS Wit _OFFSET as base.
Accesses which do use base-index addressing will need dioaddtll ea instruction.

6 Reated work

Binary instrumentation for taint tracking Dynamic taint analysis builds on seminal
work by Peter and Dorothy Denning on information flow tragkim the 70s [10].
Since then we have witnessed a string of publications déseggaint tracking, e.g.,
TaintCheck [16], Vigilante [6], XenTaint [15], and Argos(R As all these systems,
however, are too slow to be used in production systems, nds&rs started working on
optimizations that would render dynamic taint analysisuise real world scenarios. In
this section, we discuss three recent approaches whichtaleceeasing the overhead
incurred by DTA: the work by Saxena et al. [23], LIFT [22], aRd@T [14]. We com-
pared the performance &inemuwith these systems in Section 4.4, and we showed
that Minemuoutperforms all of them. We focus on the architecture oféhesls now.

State-of-the-art performance optimization for taint e by Saxena et al. [23]
builds on smart static analysis. Prior to execution, it$fates the original binary to a
completely new binary that adds highly optimized instrutaéon code only to instruc-
tions that really need it. Unfortunately, even static dsemsbly of stripped binaries is
still an unsolved problem. For this reason, the analysisrass the presence of at least
some symbolic information (like the entry points of funci®), which is typically not
available in practice.

LIFT [22] implements taint analysis in Intel's highly optieed StarDBT binary
translator. StarDBT uses additional dedicated registersfnt tracking. Specifically, it

Shtt p://software.intel.conlsites/products/docunmentation/hpc/conposerxe/en-us/ cpp/
lin/intref_cls/comon/intref_avx_details.htm

18

translates the 1A32 instructions to EM64T binary code. 8itie EM64T architecture
has more registers than the 1A32, StarDBT does not need loregisters, giving a
significant performance gain. As a consequence, howeVer, Will not work on a 32-
bit installation. LIFT applies three additional perfornearoptimizations. First, before
executing a basic block LIFT checks whether the data inebiséainted or not. If not,
execution follows a fast binary version without any infotioa flow tracking. Second,
LIFT coalesces data safety checks from multiple conseeuiasic blocks into one.
Third, LIFT reduces the overhead of switching between thalated program and the
instrumentation code by using cheaper instructions andsstagister liveness analysis,
respectively. WhileMinemudoes not apply any of these optimizations (yet), in most
cases it performs better already. If anything, they showMiaemus performance can
be improved even more. Also, our overhead for (just) the ta@icking is lower.

PTT [14] is a taint tracking system which, similarly to [18lynamically switches
execution between a heavily instrumented QEMU and fast depending on whether
tracking is required. To improve performance, PTT trackstteags at a higher ab-
straction level and in an asynchronous manner. In some neteglg] instead of in-
strumenting the micro instructions generated by QEMU, PrERtes a separate stream
of tag tracking instructions from thes6 instruction stream itself. Since the emulation
and taint tracking are now largely separable, PTT exechtsaint tracking stream in
a parallel asynchronous fashion. This results in a sigmifipgrformance gain. Still,
Minemugreatly outperforms PTT.

Binary trandation Binary translation has been an important research topiatftgast
30 years [11] now. In this section, we limit ourselves to twstems which are most
similar to Minemuy fastBT [19] and HDTrans [27]. Both systems are light-weigio-
cess emulators that use code caches for translated codapplydefficient optimiza-
tions for indirect jumps. Sinc#inemuis more than an emulator - it employs binary
translation to provide efficient taint tracking - we canneitfprm a comprehensive com-
parison with the aforementioned emulators. We focus theud&on on the main design
decisions. Whenever relevant, we also refer to QEMU [2]. BElilengh QEMU uses bi-
nary translation to implement full system virtualizatignhas been used as a basis for
multiple taint tracking tools, e.g., Argos [20].

Compared to these three systeiinemu translates the longest chunks of code
at a time. It stops only at the end of a memory region or at &agall instruction. In
principle QEMU and fastBT translate basic blocks, while H&s stops at conditional
jumps or return instructions. Another important aspectinéty translation tools is the
way they handle indirect jumps, and the issue of return cactMinemus handling of
indirect jumps is most similar to HDTrans - both systems ukmkup table that maps
locations in the code cache to locations in the original prog Keep in mind however,
that inMinemutranslated code chunks are much longer than in HDTrans asortany
jump targets are located inside chunks. As for the returhioganechanism, all three
emulators implement mechanisms that exploit the relatignisetweercal | andr et
instructions to efficiently cache the return address.

19
7 Conclusions

In this paper, we explored the research question of wheth@obthe slowness of
software dynamic taint analysis is fundamental. We beltbe¢ we have (at least par-
tially) answered this question in the negative. An emulghait is carefully designed
explicitly for taint analysis, achieves significant spegrs. We developedinemuy a
fast taint-trackingc86 emulator and showed that the slow-down caused by the com-
bination of taint analysis and emulation ranges betweer arkl 3x for real appli-
cations. The design introduces a novel memory layout thaimizes the overhead
for propagating taint in memory operations. In additionuyses SSE registers to al-
leviate potential register pressure due to the instruntientaWWe evaluated our solu-
tion with standard benchmarks as well as suites of real antplax software stacks.
Finally, we compared our results with other approaches rdsvapeeding up DTA
and show thaMinemuis significantly fasterMinemuis available for download from
https://ww. nm nemu. or g. Because of its excellent performance, we believe that
Minemumay make DTA suitable for production machines.

Acknowledgments

This work is supported by the European Research Counciligir@roject ERC-2010-
StG 259108-ROSETTA, as well as by the European Commissiong projects FP7-
ICT-257007 SYSSEC and iCode (funded by the Prevention,aPeeipess and Conse-
guence Management of Terrorism and other Security- reRisks Programme of the
European Commission Directorate-General for Home Affairkis publication reflects
the views only of the authors, and the Commission cannot lzereeponsible for any
use which may be made of the information contained theremaW grateful to David
Brumley and his team for several of the local exploits we usexaluateMinemu We
would like to thank Georgios Portokalidis for fruitful disesions, and the anonymous
reviewers for useful comments.

References

1. CVE-2009-2629: Buffer underflow vulnerability in nginx. http://cvénmorg/cgi-
bin/cvename.cgi?name=CVE-2009-2629, 2009.

2. F. Bellard. QEMU, a fast and portable dynamic translatorPrioe. of the USENIX Annual
Technical Conference, 2005.

3. S.Bhatkar, D. D. Varney, and R. Sekar. Address obfuscatioeffizient approach to combat
a broad range of memory error exploits. Rroc. of the 12th USENIX Security Symposium,
pages 105-120, August 2003.

4. W. Cheng, Q. Zhao, B. Yu, and S. Hiroshige. TaintTrace: Effidlent tracing with dynamic
binary rewriting. InProc. of the 11th Symposium on Computers and Communications, 2006.

5. J. Chow, T. Garfinkel, and P. M. Chen. Decoupling dynamic praogmalysis from execution
in virtual environments. IfJSENIX Annual Technical Conference, 2008. Best Paper Award.

6. M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou, L. Zpaand P. Barham. Vigi-
lante: end-to-end containment of internet wormsPtoc. of SOSP’ 05, 2005.

20

(o]

10.

11.

12.

13.

14.
15.
16.
17.
18.
19.
20.
21.
22.
23.

24,

25.

26.

27.

28.

29.

30.

. C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke, Sttiged\. Grier, P. Wagle,
and Q. Zhang. Stackguard: Automatic adaptive detection and preveftiuifer-overflow
attacks. In7th USENIX Security Symposium, 1998.

. J. Crandall and F. Chong. Minos: Control data attack preventiorogotial to memory

model. In37th Interational Symposium on Microarchitecture, 2004.

M. Dalton, H. Kannan, and C. Kozyrakis. Raksha: A flexible infaioraflow architec-

ture for software security. IProceedings of the 34th annual international symposium on

Computer architecture, ISCA '07, 2007.

D. E. Denning and P. J. Denning. Certification of programs fourgeinformation flow.

Commun. ACM, 20(7):504-513, 1977.

L. P. Deutsch and A. M. Schiffman. Efficient implementation of thaliaik-80 system. In

Proc. of the 11th Symposium on Principles of programming languages (POPL), 1984.

M. Egele, C. Kruegel, E. Kirda, H. Yin, and D. Song. Dynamic SpigavAnalysis. In

ATC'07: 2007 USENIX Annual Technical Conference, 2007.

W. Enck, P. Gilbert, B.-G. Chun, L. Cox, J. Jung, P. McDanieti AnSheth. Taintdroid:

an information-flow tracking system for realtime privacy monitoring oragnphones. In

Proceedings of OSDI’ 10, Vancouver, BC, October 2010.

A. Ermolinskiy, S. Katti, S. Shenker, L. L. Fowler, and M. McCaulegwards practical taint

tracking. Technical Report UCB/EECS-2010-92, University of Catifa, 2010.

A. Ho, M. Fetterman, C. Clark, A. Warfield, and S. Hand. Pract&ialt-based protection

using demand emulation. Proc. ACM SIGOPS EUROSYS 2006, 2006.

J. Newsome and D. Song. Dynamic taint analysis: Automatic deteatiatysis, and signa-

ture generation of exploit attacks on commodity softwarePrioc. of NDSS, 2005.

A. One. Smashing the stack for fun and prd®itrack, 7(49), 1996.

PaX. Paxhtt p: // pax. grsecurity. net/, 2000.

M. Payer and T. R. Gross. Generating low-overhead dynamigyttirzaslators. IrProceed-

ings of the 3rd Annual Haifa Experimental Systems Conference, 2010.

G. Portokalidis, A. Slowinska, and H. Bos. Argos: an emulator fgefiprinting zero-day

attacks. InProc. ACM SIGOPS EUROSYS 2006, 2006.

M. Probst, A. Krall, and B. Scholz. Register liveness analysisgtnozing dynamic binary

translation. InProc. of WCRE' 02, 2002.

F. Qin, C. Wang, Z. Li, H.-s. Kim, Y. Zhou, and Y. Wu. LIFT: A loaverhead practical

information flow tracking system for detecting security attacksPrioc. of MICRO, 2006.

P. Saxena, R. Sekar, and V. Parunik. Efficient fine-grainédiimentation with applications

to tain-tracking. Inn Proc. of ACM CGO’ 08, Boston, MA, April 2008.

E. J. Schwartz, T. Avgerinos, and D. Brumley. All you ever wdrngeknow about dynamic

taint analysis and forward symbolic execution (but might have beedato ask). InPro-

ceedings of the |EEE Symposium on Security and Privacy, SP’10, 2010.

Secunia. DEP/ASLR implementation progress in popular third-partgomia applications.

http://secuni a. conf gf x/ pdf / DEPASLR2010paper . pdf , June 2010.

A. Slowinska and H. Bos. The Age of Data: Pinpointing guilty bytes inmolphic buffer

overflows on heap or stack. Proc. of ACSAC' 07, 2007.

S. Sridhar, J. S. Shapiro, and E. Northup. Hdtrans: An opercesplow-level dynamic

instrumentation system. Rroc. of VEE' 06, 2006.

G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secureapnogxecution via dynamic

information flow tracking. IPASPLOS-XI. ACM, 2004.

W. Xu, S. Bhatkar, and R. Sekar. Taint-enhanced policy enfeen& a practical approach

to defeat a wide range of attacks. 15th USENIX Security Symposium, 2006.

H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda. Panoramptuwring system-wide

information flow for malware detection and analysis @S’ 07, 2007.

