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ABSTRACT

To handle the large number of malware samples appearing in the
wild each day, security analysts and vendors employ automated
tools to detect, classify and analyze malicious code. Because mal-
ware is typically resistant to static analysis, automated dynamic
analysis is widely used for this purpose. Executing malicious soft-
ware in a controlled environment while observing its behavior can
provide rich information on a malware’s capabilities. However,
running each malware sample even for a few minutes is expensive.
For this reason, malware analysis efforts need to select a subset of
samples for analysis. To date, this selection has been performed ei-
ther randomly or using techniques focused on avoiding re-analysis
of polymorphic malware variants [41, 23].

In this paper, we present a novel approach to sample selection
that attempts to maximize the total value of the information ob-
tained from analysis, according to an application-dependent scor-
ing function. To this end, we leverage previous work on behavioral
malware clustering [14] and introduce a machine-learning-based
system that uses all statically-available information to predict into
which behavioral class a sample will fall, before the sample is ac-
tually executed. We discuss scoring functions tailored at two prac-
tical applications of large-scale dynamic analysis: the compilation
of network blacklists of command and control servers and the gen-
eration of remediation procedures for malware infections. We im-
plement these techniques in a tool called FORECAST. Large-scale
evaluation on over 600,000 malware samples shows that our pro-
totype can increase the amount of potential command and control
servers detected by up to 137% over a random selection strategy
and 54% over a selection strategy based on sample diversity.

1. INTRODUCTION

Malware is at the root of many security threats on the internet.
From spam, to identity theft to distributed denial of service attacks,
malicious software running on compromised computers is a key
component of internet crime. For this reason, analyzing malware
and developing countermeasures against it has become an impor-
tant aspect of security practice. New malware samples need to be
analyzed to understand their capabilities and generate detection sig-
natures, mitigation strategies and remediation procedures. Since
tens of thousands of new malware samples are found in the wild
each day, security analysts and antivirus vendors have to employ
automated analysis techniques for this task.
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Malware commonly employs various forms of packing and ob-
fuscation to resist static analysis. Therefore, the most widespread
approach to the analysis of malware samples is currently based on
executing the malicious code in a controlled environment to ob-
serve its behavior. Dynamic analysis tools such as CWSandbox [3],
Norman Sandbox and Anubis [13, 2] execute a malware sample in
an instrumented sandbox and record its interactions with system
and network resources. This information can be distilled into a
human-readable report that provides an analyst with a high level
view of a sample’s behavior, but it can also be fed as input to fur-
ther automatic analysis tasks. Execution logs and network traces
provided by dynamic analysis have been used to classify malware
samples [14, 36], to generate remediation procedures for malware
infections [31] and to generate signatures for detecting a malware’s
network traffic [34].

One problem of dynamic analysis of malware is that it is resource-
intensive. Panda Labs reported 63,000 new malware samples per
day in 2010 with an upward trend [9]. Each of these samples needs
to be executed, if only for a few minutes. Furthermore, it is rela-
tively easy for malware authors to aggravate this problem by auto-
matically generating even larger numbers of polymorphic variants.
As aresult of the limited analysis capacity, only a subset of the daily
malware samples can be analyzed. Our own analysis sandbox, de-
spite a large-scale, distributed deployment, has to discard tens of
thousands of samples each day. This raises the question of which
samples should be selected to best utilize the available resources.

Previous work on selecting samples for dynamic analysis [41,
23] has focused on diversity: that is, the goal is to determine whether
a new malware sample, with a never-before-seen message digest, is
actually just a minor variant or a polymorphic mutation of a pre-
viously analyzed sample. Results obtained with these techniques
have shown that discarding polymorphic variants can reduce the
amount of samples to be analyzed by a factor of over sixteen. The
assumption behind this approach is that analyzing a polymorphic
variant of a known sample will not provide any new insight, so the
sample should be discarded rather than waste resources on execut-
ing it in the sandbox. Depending on the purpose for which samples
are being analyzed, however, this assumption may not hold.

One motivation for operating a malware analysis sandbox is that
the network behavior of malware can reveal the command and con-
trol (C&C) servers used by bot masters to remotely control infected
computers. If the goal is to detect C&C servers, running multiple
variants of some malware families can prove advantageous. This is
a consequence of the constant arms race between bot masters and
security professionals: bot masters need to maintain control of their
bots while security professionals work to identify and take down
their C&C infrastructure. As a result, the C&C servers used by a
malware family change over time much faster than its code-base.
Furthermore, some malware code-bases are available to multiple
independent bot masters, each of which uses a distinct C&C infras-
tructure [15].



Rather than selecting samples for analysis based only on diver-
sity, we therefore take a different angle and explicitly try to select
for analysis those samples that will produce the most valuable anal-
ysis results. This requires us to first define how to measure the
value of the output of a dynamic analysis run. We argue that this is
application-dependent, and that sample selection should take into
account the goals for which malware is being analyzed in the first
place.

To predict whether and to what extent the execution of a sam-
ple will yield useful information, we take advantage of knowledge
gleaned from samples that have already been analyzed. We ex-
tract all statically-available information on each malware sample,
including structural features of the executable, antivirus detection
results and the results of static classification using techniques from
Wicherski [41] and Jacob et al. [23]. For all dynamically ana-
lyzed samples, we further record their behavior in the sandbox and
the results of behavioral clustering using techniques from Bayer et
al. [14]. Over time, our system thus assembles a knowledge-base
of static and behavioral characteristics of malware samples. This
knowledge-base can be mined for sample selection. We use the
static information on each sample as input to a machine-learning
system that aims to predict to which behavioral cluster a sample
belongs, before we actually run the sample. We then select for ex-
ecution samples expected to belong to clusters that, based on past
performance, are most likely to provide useful information.

We implement the proposed techniques in a tool called FORE-
CAST, and empirically evaluate its performance using a large col-
lection of real-world malware binaries. Our results show that se-
lecting samples for analysis using FORECAST can provide more
useful information for a given amount of analysis resources com-
pared not only to naive, random selection, but also to a selection
strategy aimed at maximizing diversity. In summary, our contribu-
tions are the following:

e We formulate the sample selection problem as the task of choos-
ing samples for dynamic analysis to maximize the aggregate value
of the analysis results.

e We introduce novel techniques that allow us to predict the dy-
namic behavior of a malware sample before executing it. More
precisely, they allow us to predict the behavioral cluster [14] to
which the sample will belong.

e We introduce scoring functions for measuring the value of in-
formation obtained from dynamic analysis that are targeted at two
practical applications; Namely the generation of network blacklists
of command and control servers and the generation of procedures
for the remediation of malware infections on end hosts.

e Based on these techniques, we develop a system for selecting
samples for dynamic analysis according to the expected value of
the information obtained from a sample’s execution.

e We evaluate the proposed techniques on over 600,000 malware
samples, and show that they can increase the total value of the in-
formation obtained from dynamic analysis by 134% compared to
a random selection strategy and by 54% compared to a selection
strategy based on sample diversity.

2. SYSTEM GOALS AND APPROACH

The goal of FORECAST is to increase the insight that can be
gained from executing malware samples in an analysis sandbox,
given a limited amount of computational resources. If insufficient
resources are available to analyze all the malware samples that are
collected each day, sandbox operators are faced with the choice of
which samples to select for analysis.
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Figure 1: FORECAST overview.

We call this the sample selection problem, and formulate it as
follows. Given a set x of n malware samples, a scoring function
v that measures the aggregate value of the analysis results of a set
of samples and limited resources that allow the dynamic analysis
of only £ < n samples, we want to select a subset « C x, with
|| = k, that maximizes v(c). The set o can be built incremen-
tally: When selecting the next sample for analysis, we can take into
account the analysis results for all previously analyzed samples.

Previous work [41, 23] has implicitly attempted to solve this
problem by recognizing and discarding minor variants or polymor-
phic mutations of previously analyzed malware samples. The as-
sumption behind this is that every such variant will exhibit the same
behavior, therefore analyzing more than one variant provides no ad-
ditional valuable information. Because it lacked a measure of the
value of analysis results, previous work did not attempt to quan-
titatively validate this assumption. As we will show in Section 4,
discarding minor variants is indeed a good heuristic for selecting
samples. However, we will also show that in some cases executing
several almost identical samples can provide valuable information,
such as the different C&C servers contacted by each sample.

2.1 Applications

In this paper, we take a different approach and explicitly measure
the value of analysis results. For this, we develop scoring functions
targeted at two real-world applications.

Identifying C&C servers. Modern malware uses a command and
control (C&C) infrastructure that allows the malware operators to
remote-control the infected machines (also known as bots). It also
lets them update the bots’ software to adapt to the changing envi-
ronment in which they operate and to the changing goals of the bot-
net owners. While some botnets employ peer-to-peer protocols for
C&C, most employ client-server architectures and rely on redun-
dancy and fallback mechanisms to provide robustness. The C&C
servers are therefore a weak point of a botnet’s operation, making
information on their domain names or IP addresses extremely valu-
able to security practitioners. Recent research has thus focused on
identifying C&C communication among the network traffic gener-
ated by malware [22]. Such information has been used for coor-
dinated takedowns of a botnet’s C&C servers, that in some cases
have succeeded in completely shutting down a botnet [29]. In a
few cases, C&C server information has even led to the networks
of malicious internet service providers being depeered from the in-
ternet [27]. Even if the malicious servers cannot be taken down,
blacklists of C&C servers such as the one provided by FIRE [39]
or Zeus Tracker[8] can be used by network administrators as an ad-
ditional layer of defense. A C&C blacklist provides two benefits:
on the one hand, it prevents infected hosts from receiving com-
mands that would lead them to engage in harmful behavior; On the
other hand, it can alert a network administrator to the presence of
infected hosts on his network. FIRE builds its C&C blacklist based
on the results of large-scale dynamic analysis of malware samples
with the Anubis [2] sandbox. Furthermore, the C&C traffic cap-
tured during malware execution can be used to automatically gen-
erate detection signatures [34], that can be deployed on network
intrusion detection solutions. The network endpoints scoring func-




tion discussed in Section 3.4 is therefore designed to measure the
number of potential C&C servers observed during analysis.

Generating remediation procedures. When malicious code ob-
tains unrestricted execution privileges on an infected host, com-
pletely reinstalling the affected machine is typically the only sound
way of guaranteeing that the malware is fully eradicated. For a
given, known malware, however, it may be possible to generate a
reliable remediation procedure that is able to revert the effects of
the malicious code on the system and avoid the cost of reinstalla-
tion. Remediating malware infections is a task routinely performed
by anti-virus software, with varying levels of success. Recent re-
search has proposed techniques for automatically generating such
remediation procedures [31]. These techniques are based on dy-
namic analysis: malware samples are executed in an instrumented
environment, and all persistent modifications of the system state
are recorded. A remediation procedure essentially consists of a list
of affected system resources, that have to be reset to a clean state.
While the techniques in [31] include methods for generalizing the
observed behavior to some extent, it is clear that behavior that was
never observed cannot be remediated. To provide a more complete
set of remediation procedures, it is therefore desirable to observe
the widest possible variety of system-modifying behavior. The per-
sistent modifications scoring function discussed in Section 3.4 is
therefore designed to measure the amount of distinct system re-
sources affected by malware execution.

2.2 System overview

Figure 1 shows a high-level overview of FORECAST’s architec-
ture. FORECAST works in four phases:

Feature extraction. For each sample that is being considered for
analysis, we first extract a number of static features. These fea-
tures represent all the information we can efficiently obtain about
a malware sample without executing it. We consider a wide vari-
ety of static features. First of all, we extract a number of structural
features about the malicious executable. We consider information
on the origin of the malware sample, such as the user responsi-
ble for its submission to the analysis sandbox. We also include
detection results from a number of anti-virus engines. Finally, we
leverage previous work on detecting polymorphic malware variants
and include a sample’s peHash [41], as well as its static cluster and
packing level obtained using techniques from Jacob et al. [23].

Cluster prediction. The dynamic analysis phase (discussed below)
identifies the behavioral cluster to which each executed sample be-
longs. Together with the static features, this serves as input to the
cluster prediction phase. Here, we attempt to predict to which be-
havioral cluster a sample belongs, using a supervised learning ap-
proach. For this, we use a confidence-weighted linear classifier that
outputs the probabilities that a considered sample belongs to each
behavioral cluster. Whenever a sample is dynamically analyzed
and assigned to a cluster, our classifier is updated to account for
this new information. Note that, while cluster prediction uses su-
pervised learning, the behavioral malware classification techniques
we employ are unsupervised [14], and new behavioral clusters are
added incrementally as they are discovered.

Cluster scoring. In this phase we measure the cluster score for
each behavioral cluster C, defined as the average contribution of
a sample in that cluster to the scoring function v(C'). This step is
therefore dependent on the choice of an application-specific scoring
function. The scoring function takes as input the behavioral fea-
tures observed during the execution of each sample, and measures
their aggregate value. We employ two scoring functions targeted at
the applications discussed in Section 2.1. For each sample that is

considered for analysis, we can then compute its expected contri-
bution to v based on the cluster scores and the cluster probabilities
obtained in the previous phase. We call this the sample score. The
output of the cluster scoring phase is the highest scoring sample,
out of a pool of candidates, that is passed to the dynamic analysis
phase. Whenever the dynamic analysis results for a sample become
available, the cluster scores and sample scores are incrementally
updated.

Dynamic analysis. Once a malware sample has been selected, we
analyze it by running it in our instrumented sandbox. The host-
level and network-level behavior observed during execution is con-
densed into a set of behavioral features. This set is fed back to the
cluster scoring phase. Furthermore, we cluster all analyzed sam-
ples based on the set of behavioral features they exhibit, using tech-
niques from Bayer et al. [14]. The behavioral cluster to which each
analyzed sample belongs is fed back to the cluster prediction phase.

3. SYSTEM DESCRIPTION
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Figure 2: FORECAST architecture.

Figure 2 provides a more detailed view of FORECAST’s archi-
tecture. FORECAST takes as input a set x of candidate malware
samples. The system’s goal is to select for analysis a subset o C .
FORECAST works incrementally: when selecting the next samples
for analysis, it takes into account the analysis results for all previ-
ously analyzed samples. For this, FORECAST maintains an anal-
ysis queue where each not-yet-analyzed candidate sample (that is,
each sample in x\ @), is associated with a sample score. The sample
score is a measure of how much valuable information we expect to
obtain from the analysis of that sample. Of course, to achieve high
throughput, malware analysis sandboxes need to analyze several
samples in parallel. Thus, at each iteration FORECAST selects the
L top-scoring samples for analysis, where L is the parallelism level
of the sandbox, indicating the number of samples that it is able to
analyze in parallel.

3.1 Dynamic analysis and clustering

Each sample selected for dynamic analysis is executed in an in-
strumented sandbox environment for a fixed amount of time (cur-
rently four minutes). The output of dynamic analysis is the set of
behavioral features s observed during the execution of s. Behav-
ioral features are a representation of program behavior introduced
in [14]. Each behavioral feature represents a specific action per-
formed by the analyzed program on a specific operating system
or network entity, such as the creation of file C:\system32\
svcshost . exe, or an HTTP request to www . example.com.
In the behavioral clustering phase, [ is fed to the scalable behav-
ioral clustering techniques from Bayer et al. [14]. As a result, we
identify the behavioral cluster C's to which s is assigned.

The cluster prediction phase receives the label C's and incremen-
tally updates its classifier. Furthermore, 85 and C; are fed back to
the cluster scoring phase, where the cluster score for cluster Cs is
updated based on the value of the observed behavior 35 with re-
spect to the application-specific scoring function v. As a result, the



sample scores for all samples are incrementally updated, and the
next sample can be selected for analysis.

3.2 Feature Extraction

The goal of the feature extraction phase is to collect all the infor-
mation on malware samples that can be used to classify it. There-
fore, in this phase we extract all the characteristics of each mal-
ware sample that can be efficiently obtained from static analysis.
To distinguish them from the behavioral features resulting from the
dynamic analysis of a sample, we refer to these characteristics as
static features. The output of this phase is, for each candidate sam-
ple s, a set of static features ¢s. The feature space & = Usec s
grows as new candidate samples are processed and new static fea-
tures are discovered.

peHash. Unlike previous approaches to sample selection, FORE-
CAST assumes that minor variants of previously analyzed malware
samples are worth analyzing. Knowing that a candidate sample
is similar to previously analyzed samples can be extremely useful
when attempting to predict its behavior. Therefore, we include a
sample’s peHash [41] in the static features. peHash uses structural
information from an executable file’s headers and the Kolmogorov
complexity of code sections to compute a hash value that should
remain constant across polymorphic malware variants.

Static cluster. Similarly, we take advantage of static malware clus-
tering techniques from [23]. These techniques compute the dis-
tances between the code signals — essentially a bigram distribu-
tion over a code section — of binaries to group them into clusters.
The authors also introduce techniques to statically detect the level
of packing used by a sample. We call these clusters static clus-
ters. Both of these characteristics — packing level and static cluster
membership — are mapped to individual static features.

PE Header. A variety of information from a binary’s Portable Exe-
cutable (PE) header is already processed by peHash and [23], and is
thus already represented in the feature space. We extract two addi-
tional groups of features from the PE header. These are the names
of the imported DLLs and the PE section names.

Antivirus Labels. We obtain anti-virus results for all candidate
samples from the VirusTotal service [7]. VirusTotal scans each
sample using 39 AV engines, and for each detection provides the
name of the engine that detected the sample and the label it as-
signed to it. To avoid an excessively large number of AV label fea-
tures we discard the most specific part of the AV labels (indicating
the malware variant) and normalize the labels to a canonical form —
e.g. Trojan/Downloader.Carberp.n becomes carberp.

Submitter Information. For each sample that is submitted to the
sandbox, the hostname of the machine it has been submitted from is
logged. Depending on how a malware analyst collects samples and
on the types of malware she is interested in, the samples she sub-
mits may be skewed towards specific malware classes. We there-
fore map each distinct hostname from which a sample was submit-
ted to a static feature.

3.3 C(Cluster Prediction

The goal of the cluster prediction phase is to predict to which
behavioral cluster a candidate sample belongs, before executing it.
Cluster prediction therefore aims to establish a mapping between a
sample’s static features ¢ and the behavioral cluster Cs to which it
will be assigned based on its behavioral features. For this task, we
take a supervised learning approach and train a classifier by provid-
ing it with a labeled dataset consisting of (¢s, C) for each sample
s that has already been subject to dynamic analysis and clustering.

For this, we require an appropriate classification algorithm, consid-
ering our requirements and the properties of our datasets:

e High-dimensional feature space: |®| can be very large.

e Sparse data: Every sample only exhibits a small subset of the
possible features (J¢ps| << |®|). Individual features may occur
infrequently.

e Incremental operation: The results of dynamic analysis and clus-
tering should have an immediate effect on following predictions.
Furthermore, the size of the feature space and the number of clus-
ters may change over time.

e Fast prediction: We need prediction results on all candidate sam-
ples before we can select the best ones for analysis.

For FORECAST we use linear classification in combination with
the confidence-weighted (CW) learning scheme of Dredze, Cram-
mer and Pereira [18].

Linear classification. A set of static features is represented as a bi-
nary feature vector &, where every possible feature is either present
(one) or absent (zero) for a specific sample. A linear classifier de-
termines a margin y for a given feature vector & by computing the
scalar product with a weight vector @: y = >, x;w;. The lin-
ear classification process can be visualized as splitting the feature
space into two sections with a hyperplane that is determined by the
weight vector w, where the sign of the margin y tells us on which
side of the hyperplane an input vector is, thus distinguishing two
classes. The absolute value of the margin |y| can be interpreted as
the confidence in this classification.

Linear classifiers can handle high dimensional feature spaces and
perform especially fast on sparse binary feature spaces. This is
because for binary spaces, the computational cost of computing the
scalar product @ - & is proportional to ||, rather than to the total
number of features in the feature space |®|.

Confidence-weighted learning. The effectiveness of a linear clas-
sifier depends on the algorithms used to train it. In online learn-
ing, the training instances are supplied one after the other. Train-
ing algorithms for linear classifiers use update rules that adjust
the weights at each iteration ¢ based on the current weights and
a function g of the training instance features and label: w11 =
Wy + g(Zt, y+). If the feature space grows, weights can simply be
added to the classifier.

Sparse data may pose a problem to such an algorithm. The rea-
son is that typically weights are updated only if the corresponding
feature is set in . Therefore, the weights for features that oc-
cur seldom are based on much less information than weights for
frequently-occurring features. CW learning addresses this problem
by maintaining confidence information for each feature depending
on how often it occurred in training. Confidence is modeled with
a Gaussian distribution N (w;, 3;) for each feature 4. The larger
3, is, the smaller is confidence in w; and the more aggressively
the distribution will be updated by g. For a full discussion of this
classifier and the update function g we refer the reader to [18].

Multiclass prediction. The linear classifiers we have discussed
so far can distinguish two labels. FORECAST however needs to
predict to which of several behavioral clusters a sample belongs.
Such a multi-class problem can be decomposed into multiple bi-
nary problems. These are then solved by a network of n binary
classifiers. As a last step, a single multi-class label has to be de-
rived from the n binary results. For this, we can use Error Correct-
ing Output Codes (ECOC) [10]. Considering the results of the n
classifiers as an n-length binary codeword, the distances between



the codeword from the classification and the codewords of each la-
bel are calculated. The prediction result is the label for which the
distance is minimized.

One way of performing multi-class classification using ECOC is
to use a binary classifier for each pair of labels, where each clas-
sifier is trained to distinguish between these two labels. This ap-
proach is not applicable for FORECAST, because it would require
us to train |C|?/2 classifiers. With over a thousand clusters, this is
clearly problematic. This approach is also referred to as pairwise
coupling [20] or one-versus-one (OVO) classification. Instead we
use a one-versus-all (OVA) approach, which requires only a single
classifier per label. Each classifier is trained to distinguish between
its assigned label and the “rest”, i.e. all other labels. For each train-
ing instance the binary classifier of the correct class is trained with
+1 and all other classifiers with —1.

FORECAST’s cluster prediction uses one-versus-all CW learn-
ing. An advantage of this choice is that, whenever a new behav-
ioral cluster C emerges from the analysis results, we can add a new
classifier and train it to recognize C. For this, we train the new
classifier with all past samples. The classifiers for all other sam-
ples, however, do not need to be modified. The weights used for
classification are stored in a matrix w, where wc ; is the weight of
feature 4 for cluster (classifier) C'.

Probability estimates. Just picking the top predicted cluster and
proceeding with the cluster scoring would mean to discard impor-
tant information — the confidence in the prediction, given by the
margins of each classifier. Based on that output it is possible to
calculate probability estimates for each label. For ECOC models,
a generic approach is given in [21]. Here we use a simple ap-
proach from the LIBLINEAR project [19] for OVA classification.
The probability estimate for label C' is computed as an exponential
function of the margin yc of the corresponding classifier H_e%yc
Cluster size threshold. As we will show, the clusters in our be-
havioral malware clustering vary a lot in terms of size, with a few
very large clusters and a large number of clusters containing only
a few samples. Clearly, we do not want to train tens of thousands
of OVA classifiers to recognize clusters that contain only one sam-
ple. First of all, this would significantly slow down FORECAST.
Furthermore, a classifier that was provided during training an ex-
tremely small number of positive training instances would be un-
likely to provide good results. Therefore, we select a minimum
cluster size threshold 6 and group all samples belonging to clusters
with |C| < 6 in a single “other” cluster O. We do not, however,
train a classifier for O. The reason is that samples in O have noth-
ing in common and thus their static features will vary wildly. As a
probability estimate for O we therefore simply use the ratio |O| /|«
of the number of samples in O to the total number of analyzed sam-
ples.

As a final step all probability estimates are normalized so that
they add up to one. The output of the cluster prediction phase is the
cluster probability matrix p, where ps ¢ represents the probability
that sample s belongs to behavioral cluster C'.

3.4 Cluster Scoring

Given a measure of the value of the analysis results produced
by the sandbox, we can evaluate which behavioral clusters produce
more valuable results, and try to select analysis samples that will
likely fall into those clusters. For this, we calculate a cluster score
for each behavioral cluster.

As discussed in our formulation of the sample selection prob-
lem in Section 2, the value of analysis results is measured by an
application-dependent scoring function v(«), which computes the
aggregate value of the analysis results for the set of analyzed sam-

ples a. As discussed in Section 3.1, the results of dynamic anal-
ysis of a sample s is the set 55 of behavioral features observed
during the sample’s execution. The scoring function is therefore
calculated as v(a) = v({Bs : s € a}). Depending on the target
application, only a subset of the observed behavioral features may
be of interest. For instance, if the goal of analysis is to identify
malware C&C servers, only features related to network traffic are
relevant, while features representing interaction with the local sys-
tem can be ignored. The scoring functions we considered in this
work simply measure the total number of relevant behavioral fea-
tures observed. For this, each scoring function has an associated
filter f(b) — {0, 1} that returns 1 if feature b is relevant. We then
compute v = [{b € B : f(b) = 1}, with B = |, f#s. Note
that assigning different weights to different behavioral features, to
express the fact that some features may be more valuable than oth-
ers, would be a straightforward generalization of this approach.

In this work, we use the following two scoring functions, tar-
geted at the applications discussed in Section 2.1.

Identifying C&C servers To assist in the task of identifying and
blacklisting C&C servers, we introduce the network endpoints scor-
ing function. This scoring function aims to measure the number
of potential C&C servers contacted during dynamic analysis. The
features relevant for C&C server detection are those indicating net-
work communication with an IP address, and those indicating a
DNS request for resolving a domain. A simple scoring function
could therefore count the number of distinct network endpoints
(IP addresses and DNS names) contacted by the analyzed samples.
However, not all network traffic observed is related to C&C, or to
malware’s auto-update functionality (which can be seen as a type
of C&C where commands are delivered in the form of executable
code). Therefore, we employ a number of additional filters to make
the network endpoints scoring function a more reliable measure of
the amount of C&C servers contacted.

o fast-flux: C&C infrastructure is sometimes hosted on fast-flux

networks, where the same domain name resolves to a rapidly-changing

set of IPs. These IPs typically belong to infected hosts that tem-
porarily serve as C&C servers. In this case, the information on the
contacted IP addresses is of little value. Therefore, we consider IP
addresses for the network endpoints score only if the malware did
not obtain them from a DNS query.

e portscan: Many malware samples include self-propagation com-

ponents that scan the internet for targets before attempting to com-
promise them. Clearly, we do not want to include these hosts in
the network endpoints score. For this, we first discard connections
to a small number of ports that are known to be typical exploit tar-
gets, such as TCP ports 139 and 445, used by Windows file and
directory sharing services. Furthermore, we use the Bro IDS [32]
to detect port and address scans, and discard connections that are
part of detected scans.

o [iveness: C&C endpoints that are not actually available are of lit-
tle interest. We therefore filter out endpoints that could not be suc-
cessfully contacted by the malware. To decide on whether a C&C
endpoint is live, we rely on the known semantics of a few protocols
commonly used for C&C, and fall back to a default heuristic for
other kinds of traffic:

e HTTP: we only consider servers that responded with a success-
ful status code (that is, 200-299) to at least one request.

e IRC: we only consider a server if the malware sent or received
a private message or if it successfully joined a channel and sent
or received a message on that channel.



e FTP: we only consider a server if the malware successfully
logged in.

e Other: we only consider endpoints where a connection was suc-
cessfully established (for TCP) and where the server sent back
actual payload.

e clickbots: Clickbots are malware samples that include function-
ality to automatically visit advertisement links on target websites.
Their goal is to fraudulently generate advertisement revenue for
these websites. Due to the dynamic and tiered nature of advertise-
ment networks, this can lead to a significant number of network
endpoints being contacted during analysis. Since these endpoints
are not related to command and control, we filter most of them
out by using an existing list of ad-related domains that is manually
maintained for the purpose of blocking advertisement [1].

Generating remediation procedures. To assist in the task of gen-
erating remediation procedures for malware infections, we intro-
duce the persistent changes scoring function. This scoring func-
tion measures the number of distinct system resources affected by
malware execution. As in [31], we take into account modifica-
tions to the file system and the windows registry. Furthermore,
we also consider the processes and services started by the malware,
because remediation procedures, if they need to be applied to a
running system, will need to make sure that the malicious code is
not running. Each system resource is identified by its name. The
persistent changes score therefore counts the total number of dis-
tinct names of file and registry keys that are created or modified,
as well as the processes and services started. Furthermore, our dy-
namic analysis phase uses techniques from Bayer et al. [14] (that
are based on dynamic taint analysis) to detect randomly generated
file names, and replace them with a special token. Likewise, we de-
tect and replace names that are obtained by enumerating directories
and registry keys. The idea is that a malware that generates a differ-
ent random or temporary file in each execution, or one that crawls
the entire file-system, infecting all the executables it encounters,
should not be assigned a high persistent changes score because of
this.

Once a scoring function is selected, we can measure the total
value v(C) of the information provided by the analysis of samples
in a cluster C. We then calculate cluster_scorec = v(C)/|C].
The cluster score is thus a value to cost ratio: The amount of valu-
able information provided by the cluster, divided by the analysis
resources that have been spent to obtain it.

To calculate the sample scores for a sample s, we proceed as fol-
lows. Rather than simply consider the most likely cluster, we take
into account the entire cluster probability vector ps. The sample
score is therefore the expectation of the cluster score, calculated as
the scalar product sample_scores = ps - cluster_score. At each
iteration of FORECAST, the L candidate samples with the highest
sample score are passed to the dynamic analysis phase.

3.5 Online Operation

As a result of the analysis of a selected sample s, the set of ob-
served behavioral features 35 becomes available. These in turn are
passed on to the behavioral clustering phase, which determines the
cluster C. This newly obtained information then needs to be incor-
porated into our knowledge-base. Thus, we update the cluster score
for cluster Cs. Furthermore, the cluster label C's for the newly ana-
lyzed sample is fed back to the cluster prediction phase for learning.
Therefore we update the classifier’s weight matrix w.

At the next iteration of FORECAST, before selecting the next L
samples, we recompute the probability matrix p for all remaining

candidate samples, and recompute their sample scores. For this,
we need to repeat the prediction step for each sample in x \ «. The
actual size of x depends on how FORECAST is deployed in prac-
tice. Our simulation results in Section 4.3 are obtained using one
day of malware samples from a large-scale sandbox deployment as
candidate set. In this scenario, x can contain tens of thousands of
samples. Thus, this step is one of the more computationally expen-
sive in FORECAST’s operation. However, we only need to perform
this step once every L samples. As we will show in Section 4.4,
for realistic levels of parallelism this leads to more than acceptable
performance.

4. EVALUATION

To develop FORECAST, we used a dataset of malware samples
analyzed by an analysis sandbox in the months of October, Novem-
ber and December 2008. The resulting dataset consists of 100,408
samples. To evaluate FORECAST we use a larger, more recent
dataset, that includes all the samples analyzed in the months of
July, August and September of 2010. This 2010 dataset consists of
643,212 samples.

Table 1 shows an overview of the distribution of static features
among feature groups for the 2010 dataset. We can see that the
feature-space is large, with over 700 thousand distinct features.
However, the mean number of features for each sample is only 21.
For several of the feature groups, such as the peHash or static clus-
ters groups, each sample is in fact assigned exactly one feature.

Table 1: Distribution of features in the 2010 dataset.
| Feature group Total | Average |

PE section names 42389 4
Imported DLLs 12386 5
peHash 218380 1
Static clusters 203078 1
Packing Level 4 1
AV labels 250852 8
Submitter information 1909 1
[ Total [ 729007 | 21 |

We determined FORECAST’s parameters by testing our system
on the 2008 dataset. For the behavioral clustering, we use the same
parameters and distance threshold employed in [14]. Recall that
FORECAST trains a OVA classifier for each cluster C' such that
|C| > 6. The samples in smaller clusters are instead assigned to
the other cluster O. For our experiments, we selected § = 20.
Decreasing 6 beyond this point leads to a slow decrease of |O|,
while causing a sharp increase in the number of behavioral clusters.

4.1 Cluster Prediction

Table 2: Contribution of feature groups to cluster prediction
accuracy for the 2010 dataset

Feature group Prediction Accuracy
Using all but FG [ Using only FG

None 68% -

PE section names 67% 45%
Imported DLLs 66% 40%
peHash 66% 45%
Static clusters 66% 45%
Packing level 68% -

AV labels 65% 52%
Submitter information 68% -

To assess the accuracy of FORECAST’s cluster prediction, we
train FORECAST’s classifier on the samples from the first month
and measure its accuracy on those of the last two months. Since



FORECAST is incremental and adapts with every sample that is an-
alyzed, a dedicated training set is not strictly necessary. However,
it is still desirable to bootstrap the system on some initial data, so
that predictions can be based on reasonable knowledge. For the
2010 dataset, the training set of July 2010 consists of 193,726 sam-
ples while the testing set of August and September 2010 includes
449,486 samples. Samples are processed for prediction and train-
ing in chronological order.

The 2010 dataset includes a total of 1303 behavioral clusters,
including the other cluster O. The first line of Table 2 shows the
cluster prediction accuracy when using all static features. For 68%
of the 449,486 samples, our classifier assigned the highest proba-
bility to the correct behavioral cluster (out of the 1303 behavioral
clusters). The following lines show the classifier’s accuracy if it
is trained without features from one of the groups listed in Ta-
ble 1 (left column), and if it is trained using exclusively features
from a single group (right column). Table 2 thus provides some
insight into the contribution of each feature group to the classifier’s
prediction accuracy. We can see that removing any single feature
group does not cause large drops in accuracy. The reason is that
features from the different groups are highly correlated. For in-
stance, peHash and the static clustering from [23] lead to similar
classifications of malware binaries. Therefore, removing the pe-
Hash features causes only a modest decrease in accuracy, because
the static features provide similar information. Likewise, samples
in each static cluster are typically assigned only a handful of dif-
ferent AV labels. Nonetheless, the right column shows that none of
the feature groups, on their own, are sufficient to obtain comparable
classification accuracy.

4.2 Cluster Scoring

The scoring functions proposed for FORECAST are designed to
assist the selection of samples for specific analysis goals, by mea-
suring the value of the information provided by an analysis run. It
is important to verify that the proposed scoring functions indeed
encourage the selection of samples that are relevant to the analy-
sis goals. For this, for each scoring function, we rank the 1,303
clusters in the 2010 dataset by their cluster score v(C)/|C]|, and
manually assess some of the highest- and lowest-scoring clusters,
as well as some of the largest clusters in the dataset. For space
reason, we present results only for the network endpoints scoring
function. Results for the persistent changes scoring function are
available in an extended version of the paper [30].

The network endpoints scoring function is designed to encourage
the analysis of samples that are likely to reveal new C&C servers.
Therefore, we would expect the highest-ranked clusters for this
score to belong to bots and other remote controlled malware, and
especially to malware families that use a highly redundant or dy-
namic C&C infrastructure. Table 3 shows significant clusters of
the dataset ranked by the network endpoints score. Here, the fea-
ture count is the total number of potential C&C servers detected in
this cluster.

Indeed, almost all top-ranked clusters belong to remote controlled
bots or trojans. Furthermore, several of these are associated with
malware families that are known to use highly dynamic C&C in-
frastructure. One example is the Pushdo/Cutwail botnet (discussed
extensively in [17]), found at rank three. Pushdo binaries contain a
frequently-updated list of IP addresses. The malware contacts these
addresses over HTTP to download a binary payload: typically an
instance of the Cutwail spam engine. Cutwail then proceeds to
obtain templates and instructions for spamming from other C&C
servers over a custom binary protocol. Likewise, the Koobface bot-
net, at rank 28, is known to use compromised web pages as part

of its C&C infrastructure. Bredolab, at rank 15, is a downloader
similar to Pushdo [38].

Vundo/Zlob at rank eight, is a Fake-AV downloader. These sam-
ples download binaries from a number of different servers. This is
a representative example of cases where a diversity-based selection
strategy would cause the analysis sandbox to miss relevant behav-
ior. The reason is that the 26 samples in this cluster have only
two distinct peHash values. Discarding the remaining 24 samples
would cause most of the 19 C&C servers to remain undiscovered.

In a few cases, however, we assign a high network endpoints
score to samples that we are not necessarily interested in. The top
non-relevant cluster is the Adrotator cluster at rank six. The sam-
ples in this cluster are clickbots: They visit advertisement links to
fraudulently generate advertisement revenue. In this case, some of
the advertisement servers in questions are not in our adblock black-
list, therefore they contribute to the network endpoints score.

A total of 171.533 samples belong to clusters with score zero.
Among these an Allaple cluster can be found, which performs net-
work scans that are filtered by the scoring function as well as an-
other cluster performing no network activity at all.

Table 3: Selected clusters ranked by network endpoint score

[ Rank | Size | Feature Count | Malware Family |
1 36 84 Unknown Bot
2 20 20 Harebot
3 29 26 Cutwail
6 31 24 Adware Adrotator
8 26 19 Vundo / Zlob
15 67 32 Bredolab

28 141 51 Koobface
36 82 27 Swizzor
67 173 33 zBot
199 121272 4027 “other” Cluster
273 189285 2596 | Unknown Downloader
Last 16370 0 Allaple/Rahack
Last 28179 0 No activity

4.3 Simulation

To assess the real-world impact of performing sample selection
using FORECAST, we perform a trace-based simulation. For this,
we consider all of the samples that our sandbox was able to analyze
during August and September 2010, and simulate a sandbox de-
ployment with a smaller amount of resources, that is therefore able
to analyze only a specified percentage of these samples. This allows
us to compare FORECAST with other sample selection strategies,
and measure the effect of each strategy on the value of the analysis
results. The fact that our existing sandbox is considered, for the
purpose of this simulation, to have 100% capacity does not mean
that it is in reality able to process all available samples. However,
we clearly cannot include in our evaluation samples for which we
do not have dynamic analysis results. To simulate a FORECAST
deployment, we split up the last two months of the 2010 dataset
according to the day on which each analysis result was produced.
For each day, we then perform sample selection using five different
strategies, taking into account information obtained from sample
analysis during the previous days.

e Random: Randomly select the samples for analysis. This simple
selection strategy provides a baseline against which other strategies
can be evaluated.

e PeHash: This selection strategy uses a sample’s peHash [41] to
attempt to maximize the diversity of the analyzed samples. For this,
we randomly select a sample for analysis for each distinct peHash.
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Figure 3: Daily simulation results for network features, . =
100

Once all these samples have been analyzed and if more analysis
resources are available, we proceed to select a second sample for
each peHash, and so on.

e Static: This selection strategy is similar to the previous one, but
uses a sample’s static cluster, identified with techniques from Jacob
et al.[23], instead of its peHash. Together with the peHash selection
strategy, this represents the state of the art in sample selection.

e ForeCast: We select samples for analysis using FORECAST. We
test FORECAST with values of L (the level of parallelism) ranging
between 50 and 1600.

e Optimum: Here we perform sample selection based on FORE-
CAST’s cluster scoring technique, but assuming that cluster predic-
tion is 100% accurate; That is, that we know to which behavioral
cluster each sample belongs, before executing it. Clearly, such a se-
lection strategy is not possible in practice, but it serves as an upper
bound on the benefits a sample selection strategy can bring.

Figure 3 shows the simulation results for the network endpoint
scores and L = 100. On the X-axis, we have the capacity of the
simulated sandbox relative to the real sandbox. This is the per-
centage of the samples from each day that the simulated sandbox
is able to handle. On the Y-axis, we have the percentage of rel-
evant features observed over the entire 61 day period. Thus, the
Y-axis represents the percentage of C&C endpoints discovered by
the simulated sandbox.

Table 4: Simulation results at 15% sandbox capacity.

Number of | Percentage | Impr. over
features of features random

Random 1645 17% 0%

Static 2242 23% 36%
peHash 2504 26% 52%
FORECAST, L = 50 3900 41% 137%
FORECAST, L = 100 3857 40% 134%
FORECAST, L = 200 3899 41% 137%
FORECAST, L = 400 3821 40% 132%
FORECAST, L = 800 3825 40% 133%
FORECAST, L = 1600 3732 39% 127%
Optimum 5271 55% 220%

We can see that FORECAST clearly outperforms the random se-
lection strategy. To provide concrete numbers, we have picked 15%
of the simulated sandbox capacity to compare the approaches, be-
cause the more limited the resources are, the more important it is
which samples are selected for analysis. The results are shown

in Table 4. With 15% sandbox capacity and L. = 100, FORE-
CAST allows us to observe 134% more potential C&C servers com-
pared to a random selection strategy. Furthermore, both peHash
and static perform significantly better than random selection, by
52% and 36% respectively. This confirms the intuition from pre-
vious work [41, 23] that diversity is a good heuristic for sample
selection. Nonetheless, FORECAST provides noticeable benefits
compared to both strategies, outperforming peHash by 54%, and
static by 72%. This demonstrates that explicitly optimizing sample
selection for an analysis goal can improve the overall value of the
analysis results. It is also worth noting that the optimum selection
strategy outperforms FORECAST by 37%. This shows that there
is some margin for improving FORECAST’s performance if the ac-
curacy of its cluster prediction component can be increased, for
instance by considering additional static features or by improving
the classifier. Table 4 also shows that higher levels of parallelism
have modest negative effects on performance. With L = 1600,
FORECAST reveals only 4% less features than with L = 50. Note
that a parallelism level of 1600 is over an order of magnitude larger
than our current deployment.
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Figure 4: CDF of necessary samples to get 60% of network
features, L. = 100

Figure 4 shows the cumulative distribution function, over the 61
days considered, of the time needed by a simulated sandbox with
100% capacity to observe 60% of relevant features. We can see
that on the median day, a sandbox using FORECAST could observe
60% of features after having analyzed only about one third of the
daily samples in 7.2 hours. A sandbox using the random selection
strategy, on the other hand, would need 15 hours to provide the
same number of potential C&C servers, while with the diversity-
based sample selection strategies, about 10 hours would be needed.
A secondary benefit of FORECAST is therefore the faster response
to new C&C servers.

4.4 Performance

Table 5: FORECAST run-time on 2010 dataset, L = 100
[ | Total (hours) | Per Sample (s) |

Feature Extraction | 48 0.39
Cluster Prediction 13 0.11
Cluster Scoring 0.34 <0.01
Clustering 17 0.13
[ Total [ 78.34 [ 0.64 |

Since the aim of a sample selection strategy is to more efficiently
use the computing resources available for dynamic analysis, it can-
not itself require excessive resources. Clearly, deciding if a sample



should be analyzed must be much faster than actually running dy-
namic analysis on it.

Table 5 shows FORECAST’s run-time for the simulation described
in the previous section on the 2010 dataset, running on a single
server. As we can see, the total time per sample is under one sec-
ond. This is negligible compared to the four minutes our sandbox
spends executing each sample. Note that the cost of running AV
engines on the samples is not included in this figure, because we
obtain AV results from the VirusTotal service [7]. Performing AV-
scanning with all engines supported by VirusTotal would require
an additional five seconds per sample using a single machine [16].

4.5 Evasion

Our experiments have shown that FORECAST is effective in se-
lecting for dynamic analysis samples that will provide useful in-
formation. However, malware authors could attempt to avoid anal-
ysis by tricking our system into not selecting their binaries. For
this, they could attack our cluster prediction component, which ul-
timately relies on the static features discussed in Section 3.2. A
first approach would be to mutate malware samples so that our sys-
tem cannot statically recognize variants as similar. For this, mal-
ware authors could develop techniques for polymorphic mutation
designed to evade peHash [41] as well as static clustering [23].
Furthermore, they could try to confuse the AV companies’ (propri-
etary) techniques for assigning names to malware variants. If such
mutation techniques were successful and widespread, FORECAST
would become at best useless. However, an individual malware
author has little incentive to deploy such a technique, because it
would not succeed in evading analysis for his samples. The reason
is that our cluster prediction component would most likely assign
such novel-looking samples to the other cluster O. As we can see
from Table 3, because of its diversity, the other cluster is ranked
quite high by our cluster scoring algorithm.

Alternatively, a malware author could attempt to perform a mimicry

attack, tricking FORECAST into assigning his malware to a cluster
that has very little interesting behavior (such as the Allaple cluster
shown in Table 3). Indeed it is relatively straightforward to develop
a sample that resembles a variant of the Allaple worm. However,
such a sample would hardly be successful, as it would be immedi-
ately detected by most AV engines. Evading detection by AV en-
gines while performing mimicry against FORECAST’s cluster pre-
diction (which includes AV labels among its features) would seem
to be challenging.

S. RELATED WORK

There exists a large body of related work on malware detection
and analysis. Currently, the most popular approach for malware
analysis relies on sandboxes [13, 3, 4, 5, 6]. A sandbox is an in-
strumented execution environment that runs an unknown program,
recording its interactions with the operating system (via system
calls) or other hosts (via the network). Often, this execution en-
vironment is realized as a system emulator or a virtual machine.
For each malware program that is analyzed, a sandbox will pro-
duce a report that details the host-based actions of the sample and
the network traffic that it produces.

Based on the reports that capture the dynamic activity of mal-
ware programs, it is possible to find clusters of samples that per-
form similar actions [11, 14], or to perform supervised malware
classification to detect samples from known malware families [36].

In addition to approaches that perform malware clustering and
classification on the output of sandboxes, there are a number of
static techniques that share the same goal but operate directly on the
malware executable [26, 35, 25, 40]. Unfortunately, these tools all

assume that the malicious code is first unpacked and disassembled.
However, existing generic unpackers rely on the dynamic instru-
mentation of executables [37, 28, 24]. That is, these systems need
to execute the sample. This is a problem in our context, because
we aim to avoid the overhead associated with dynamic analysis and
need to pick a sample without executing the malware first.

A few tools can process packed malware samples but do not re-
quire a previous, dynamic unpacking step. Some of these tools [33]
do not attempt to classify (or cluster) malware programs directly.
Instead, they use static analysis only to distinguish between packed
and unpacked executables. Packed executables are then forwarded
to a dynamic unpacker. We are only aware of two systems that can
detect duplicate malware samples using a fully static approach [41,
23]. Our system uses both of these tools to produce input that we
then leverage for the cluster prediction step. As our experiments
demonstrate, FORECAST significantly outperforms these systems.

Finally, [12] takes a dynamic approach to duplicate sample de-
tection: All samples are executed in the sandbox, but after a short
time-out (1 minute) the behavior so far is compared with the be-
havior of previously analyzed samples. If the sample is detected as
a duplicate, execution is immediately terminated, otherwise analy-
sis continues until a longer analysis time-out. The authors do not
evaluate their approach with respect to an objective function. In
any case, their system requires at least one minute to discard “un-
interesting” samples, while FORECAST spends only 0.64 seconds
on each sample, as shown in Table 5.

6. CONCLUSION

Given the flood of tens of thousands of malware samples that
are discovered every day, time is a valuable resource for a dynamic
malware analysis system. Of course, the available time should be
spent on analyzing samples that are most relevant, where relevance
depends on the goals of the analyst and the application domain.
For example, for botnet C&C analysis, one would prefer to pick
samples that produce network traffic and reveal the locations of
C&C servers.

In this paper, we presented FORECAST, a system that can select
the malware sample that is most likely to yield relevant informa-
tion, given a domain-specific scoring function. The key require-
ment is that this selection process has to be performed efficiently,
on a possibly large pool of candidates, and without actually running
a sample. To realize our approach, we use a large number of in-
put features that are statically extracted from malware executables.
These features are then fed into a predictor, which estimates the ex-
pected information gain when executing a sample. This predictor
uses machine learning techniques and leverages a knowledge base
built from previously-analyzed samples. Our experiments demon-
strate that FORECAST is effective in selecting interesting samples.
On a test set of more than 600 thousand malware samples, our sys-
tem showed a high accuracy and significantly outperformed a se-
lection strategy that simply avoids picking similar (or duplicate)
samples.
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