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ABSTRACT

A promising method for the detection of previously unknovale
injection attacks is the identification of the shellcode thgart of
the attack vector using payload execution. Existing systeased
on this approach rely on the self-decrypting behavior of/puair-
phic code and can identify only that particular class of Isoele.
Plain, and more importantlynetamorphicshellcode do not carry
a decryption routine nor exhibit any self-modifications ahds
both evade existing detection systems. In this paper, weepte
a comprehensive shellcode detection technique that usesdf s
runtime heuristics to identify the presence of shellcodarbitrary
data streams. We have identified fundamental machine-tpet
ations that are inescapably performed by different shéddgpes,
based on which we have designed heuristics that enable the-de
tion of plain and metamorphic shellcode regardless of tleeais
self-decryption. We have implemented our technique in Gene
code injection attack detection system based on passiveoriet
monitoring. Our experimental evaluation and real-worlgldg-
ment show that Gene can effectively detect a large and @i\s&s
of shellcode samples that are currently missed by existeigcd
tors, while so far it has not generated any false positives.

Categories and Subject Descriptors
K.6.5 [Security and Protection]: Invasive software

General Terms
Security
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1. INTRODUCTION

Code injection attacks have become one of the primary meth-
ods of malware spreading. In a typical code injection attalck
attacker sends a malicious input that exploits a memoryuperr
tion vulnerability in a program running on the victim’s coutpr.
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The injected code, known asellcode carries out the first stage of
the attack, which usually involves the download and exeoutif a
malware binary on the compromised host.

Once sophisticated tricks of the most skilled virus authats
vanced evasion techniques like code obfuscation and pojymsm
are now the norm in most instances of malicious code [19]. The
wide availability of ready-to-use shellcode constructmm obfus-
cation toolkits and the discovery rate of new vulnerataithave
rendered exploit or vulnerability specific detection tegaes in-
effective [31]. A promising approach for the generic ddtatof
code injection attacks is to focus on the identification &f shell-
code that is indispensably part of the attack vector, a igalerini-
tially known as abstract payload execution [33]. Identifyithe
presence of the shellcode itself allows for the detectiopref/i-
ously unknown attacks without caring about the particukpt@ta-
tion method used or the vulnerability being exploited.

Initial implementations of this approach attempt to idnthe
presence of shellcode in network inputs using static co@ddyan
sis [33—35]. However, methods based on static analysisotafin
fectively handle malicious code that employs advancedsatation
tricks such as indirect jumps and self-modifications. Dyitasnde
analysis using emulation is not hindered by such obfusesitimd
can detect even extensively obfuscated shellcode. Thisdifac-
tual” payload execution has proved quite effective in pcacf22]
and is being used in network-level and host-level systemshi®
zero-day detection of both server-side and client-sides Gojibc-
tion attacks [9, 14,15, 23, 38].

A limitation of the above techniques is that they are confiteed
the detection of a particular class of polymorphic shelictitht ex-
hibits self-decrypting behavior. Although shellcode “piag” and
encryption are commonly used for evading signature-basézste
tors, attackers can achieve the same or even higher levelaef e
siveness without the use of self-decrypting code, rendealrove
systems ineffective. Besides code encryption, polymarphtan
instead be achieved by mutating the actual instructioniseo§hell-
code before launching the attack—a technique knowmetamor-
phism[32]. Metamorphism has been widely used by virus authors
and thus can trivially be applied for shellcode mutationrpsis-
ingly, evenplain shellcode, i.e., shellcode that does not change
across different instances, is also not detected by egigi@tyload
execution methods. Technically, a plain shellcode is nfeiht
than any instance of metamorphic shellcode, since both teanky
a decryption routine nor exhibit any self-modifications gnamic
code generation. Consequently, an attack that uses a psgvio
unknown static analysis-resistant plain shellcode willhnage to
evade existing detection systems.

In this paper, we present a comprehensive shellcode dmtecti
technique based on payload execution. In contrast to prs\ap-
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Figure 1: Overview of the proposed shellcode detection archi-
tecture.

proaches that use a single detection algorithm for a p#aticlass
of shellcode, our method relies on several runtime heasigti-
lored to the identification of different shellcode types. Wave
designed four heuristics for the detection of plain and metghic
shellcode targeting Windows systems. Polymorphic she#ids in
essence a self-decrypting version of a plain shellcode tfaumsl it
is also effectively detected, since the concealed plaiticsite is
revealed during execution. In fact, we also enable the teteof
polymorphic shellcode that uses SEH-based GetPC codehvgic
currently not handled by existing polymorphic shellcodesdtors.
Furthermore, instead of solely using a CPU emulator, ourcamh
couples the heuristics with an appropriate image of the ¢et@p
address space of a real process, enabling the correct mxeofit
shellcode that depends on certain kinds of host-level gante

Abbreviation M atching Shellcode Behavior

PEB kernel 32. dl | base address resolution
BACKWD kernel 32. dl | base address resolution
SEH Memory scanning / SEH-based GetPC cqde
SYSCALL Memory scanning

Table 1. Overview of the shellcode detection heuristicsused in
Gene.

heuristics can easily be added due to the extensible natute o
system.

Existing polymorphic shellcode detection methods focushen
identification of self-decrypting behavior, which can bmsiated
without any host-level information [23]. For example, asses to
addresses other than the memory area of the shellcode atgelf
ignored. However, shellcode is meant to be injected intaaing
process and it usually accesses certain parts of the preckssss
space, e.g., for retrieving and calling API functions. Imizast to
previous approaches, the emulator used in our system ippeegli
with a fully blown virtual memory subsystem that handlesuskér-
level memory accesses and enables the initialization of omgm
pages with arbitrary content. This allows us to populatevitteal
address space of the supposed process with an image of tipedap
pages of a process taken from a real system.

The purpose of this functionality is twofold: First, it etebd
the construction of heuristics that check for memory aces$s
process-specific data structures. Although the heuriptiesented
in this paper target Windows shellcode, and thus the addpzsse

We have implemented the above technique in Gene, a network-image used in conjunction with these heuristics is takemfeo

level detector that scans all client-initiated streamscfmate injec-

Windows process, some other heuristic can use a differem-me

tion attacks against network services. Gene is based oiveass Ory image, e.g., taken from a Linux process. Second, thisvalto

network monitoring, which offers the benefits of easy lasgale
deployment and protection of multiple hosts using a single- s
sor, while it allows us to test the effectiveness of our tégha
in real-world environments. Nevertheless, although Geyeraies
at the network level, its core inspection engine can anafybée
trary data coming from any source. This allows our approadiet
readily embedded in existing systems that employ emuldiased
detection in other domains, e.g., for the detection of nalisweb-
sites [15] or in browser add-ons for the detection of driyedbwn-
load attacks [14].

Our evaluation with publicly available shellcode samples a
shellcode construction toolkits, shows that Gene cantifdg de-
tect many different shellcode instances without prior kisage
about each particular implementation. At the same timey a&x-
tensive testing of the runtime heuristics using a large évetse set
of generated and real data, in addition to a five-month depémyt
in production networks, Gene has not generated any falstvess

2. ARCHITECTURE

The proposed shellcode detection system is built aroundl& CP

emulator that executes valid instruction sequences fourtialei in-
spected input. An overview of our approach is illustratefii 1.
Each input is mapped to an arbitrary location in the virtuhdrass

space of a supposed process, and a new execution beginsdobm e

and every byte of the input, since the position of the firstrirs
tion of the shellcode is unknown and can be easily obfuscatee
detection engine is based on multiple heuristics that natctime
patterns inherent in different types of shellcode. Durirgogition,
the system checks several conditions that should all befigati
in order for a heuristic to match some shellcode. Moreovew n

some extent the correct execution of non-self-containeticzsite
that may perform accesses to known memory locations foi@vas
purposes [10]. We discuss this issue further in Sec. 6.

3. RUNTIME HEURISTICS

Each heuristic used in Gene is composed of a sequence of con-
ditions that shoulall be satisfiedn order during the execution of
malicious code. Table 1 gives an overview of the four heigsst
presented in this section. The heuristics focus on theifitsatton
of the first actions of different shellcode types, accordimgheir
functionality, regardless of any self-decrypting behavio

3.1 Resolving kernel32.dll

The typical end goal of the shellcode is to give the attackbr f
control of the victim system. This usually involves just a/fgim-
ple operations, such as downloading and executing a malware
nary on the compromised host. These operations requireamte
tion with the OS through the system call interface, or in cafse
Microsoft Windows, through the user-level Windows API.

The Windows APl is divided into several dynamic load libesri
(DLLs). In order to call an API function, the shellcode mussffi
find its absolute address in the address space of the prothiss.
can be achieved in a reliable way by searching for the Rel&fix
tual Addresses (RVASs) of the function in the Export Diregtdable
(EDT) of the DLL. The absolute Virtual Memory Address (VMA)
of the function can then be easily computed by adding the BLL
base address to the function’s RVA. In facer nel 32. dI | pro-
vides the quite convenient functioh®adLi br ar y, which loads
the specified DLL into the address space of the calling paed
returns its base address, a@dt Pr ocAddr ess, which returns



1 xor eax, eax ; eax =0

2 nov eax, fs:[eax+0x30] ; eax = PEB

3 nov eax, [eax+0x0C] ; eax = PEB. Loader Dat a

4 nov esi, [eax+0x1(] ; esi = InlnitializationO der
Modul eLi st. Fl i nk

5 | odsd ; eax = 2nd list entry
(kernel 32.dl1)

6 nov eax, [eax+0x08] ; eax = LDR_MODULE. BaseAddr ess

Figure 2: A typical example of code that resolves the base ad-
dressof ker nel 32. dI | through the PEB.

the address of an exported function from the specified DLL-. Af
ter resolving these two functions, any other function in &yt

can be loaded and used directly. However, custom functiarcke

ing using hashes is usually preferable in modern shellcsidee
Get Pr ocAddr ess takes as argument the actual name of the func-
tion to be resolved, which increases the shellcode sizaaenably.

No matter which method is used, a common fundamental oper-
ation in all above cases is that the shellcode has to firstddate
base address éfer nel 32. dl | . Since this is an inherent opera-
tion that must be performed by any Windows shellcode thatlmee
to call a Windows API function, it is a perfect candidate fhet
development of a generic shellcode detection heuristic.

3.1.1 Process Environment Block

Probably the most reliable and widely used technique fagreet
mining the base address ker nel 32. dl | takes advantage of
the Process Environment Block (PEB), a user-level strectoat
holds extensive process-specific information. Figure 2vstatyp-
ical example of PEB-based code for resolviogr nel 32. dl | .
The shellcode first gets a pointer to the PEB (line 2) through t
Thread Information Block (TIB), which is always accessiatea
zero offset from the segment specified by B&register. A pointer
to the PEB exists 0x30 bytes into the TIB, as shown in Fig. 2 Th

The linear address of the TIB is also contained in the TIBfitse
at the locatiorFS: [ 0x18] , as shown in Fig. 3. Thus, another way
of reading the pointer to the PEB without using #® register in
the same instruction is the following:

0

TI B address
PEB addr ess

XOr eax, eax
xor eax, fs:[eax+0x18]
nov eax, [ eax+0x30]

;. eax
; eax
; eax

Note in the above example that other instructions besidescan

be used to indirectly read a memory address througlrgeegis-

ter (xor in this case). No matter how obfuscated the code is, the
condition remains robust since it does not rely on the executf
particular instructions.

Although condition P1 is quite restrictive, the possibilitf en-
countering a random read frofS: [ 0x30] during the execu-
tion of some benign input is not negligible. Thus, it is dable
to strengthen the heuristic with more operations exhibitgany
PEB-basedker nel 32. dl | resolution code.

Condition P2. Having a pointer to the PEB, the next step of the
shellcode is to obtain a pointer to tiREB_LDR_DATA structure
that holds the list of loaded modules (line 3 in Fig. 2). Such a
pointer exists OxC bytes into the PEB, in theader Dat a field.
Since this is the only available reference to that data stracthe
shellcode unavoidably has to read #B. Loader Dat a pointer.

We can use this constraint as a second condition for the PHishe
tic (P2): the linear address dPEB. Loader Dat a is read

Condition P3. Moving on, the shellcode has to walk through the
loaded modules list and locate the second eikey fiel 32. dI |).

A pointer to the first entry of the list exists inthal ni ti al i za-

ti onOrder Modul eLi st . Fl i nk field located 0x1C bytes into
thePEB_LDR_DATAstructure. The read operation from this mem-
ory location (line 4 in Fig. 2) allows for strengthening foet the
detection heuristic with a third condition.

absolute memory address of the TIB and the PEB varies among  Although this is the most well known [5,26,27], and widelyeds

processes, and thus the only reliable way to get a handle teEB
is through theFS register, and specifically, by reading the pointer
located at addredsS: [ 0x30] .

Condition P1. This fundamental constraint is the basis of our
first detection heuristi(PEB). If during the execution of some in-
put the following condition is tru€P1): (i) the linear address of
FS: [ 0x30] is read, and (ii) the current or any previous instruc-
tion involved theFS register, then this input may correspond to a
shellcode that resolvéser nel 32. dl | through the PEB.

The second predicate is necessary for two reasons. Fiist, it
useful for excluding random instructions in benign inpiiatthap-
pen to read from the linear addressk$: [ 0x30] without in-
volving theFS register. For example, FS: [ 0x30] corresponds
to addres®©x7FFDF030 (as shown in the example of Fig. 3), the
following code will correctly not match the above condition

0x7FFDO000
[ ebx+0xF030]

nov ebx,
nov eax,

;. eax

FS: [ 0x30]

On the other hand, the memory acces&® [ 0x30] can be
made through an instruction that does not useRBeegister di-
rectly. For example, an attacker could take advantage ef sig-
ment registers and replace the first two lines in Fig. 2 with:

nov ax, fs ; ax = fs

nmov bx, es ; preserve es

nov es, ax . es =fs

nov eax, es:[0x30] ; load FS:[0x30] to eax
nov es, bx ; restore es

The code loads the segment selector ofRBaegister toES (nov
between segment registers is not supported), reads theeptin
the PEB, and then restores the original value ofEBeegister.

technique for all Windows versions up to Windows Vista, iedo
not work “as-is” for Windows 7. In that versioker nel 32. dl |

is found in the third instead of the second position in the ahesl
list[7]. A more generic and robust technique is to walk tlglothe
list and check the actual name of each module kstilnel 32. dl |
is found [7,29]. In fact, thd®EB_LDR_DATA structure contains
two more lists of the loaded modules that differ in the ordethe
DLLs. All three lists are implemented as doubly linked ljsiad
their correspondingil ST_ENTRY records contain two pointers to
the first ¢l i nk) and last Bl i nk) entry in the list.

Based on the above, and given thatKgr nel 32. dl | can
be resolved through any of the three lists, and (ii) list éraing
can be made in both directions, the third condition of theriséa
can be specified as follow®3): the linear address of any of the
Fl i nk or Bl i nk pointers in thel nLoadCOr der Modul elLi st ,

I nMenor yOr der Modul eLi st,orlnlnitializati onO -
der Modul eLi st records of thePEB _LDR DATA structure is
read

3.1.2 Backwards Searching

An alternative technique for locatirkger nel 32. dl | is to find
a pointer that points somewhere into the memory area where th
ker nel 32. dl | has been loaded, and then search backwards un-
til the beginning of the DLL is located [27]. A reliable way to
obtain a pointer into the address spacekef nel 32. dl | is to
take advantage of the Structured Exception Handling (SE¢thm
anism of Windows [21], which provides a unified way of handlin
hardware and software exceptions. When an exception qdbers
exception dispatcher walks through a list of exception kemsdor
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Figure 3: A snapshot of the TIB and the stack memory areas
of atypical Windows process. The SEH chain consisting of two
nodesishighlighted.

the current thread and gives each handler the opportunftgridle
the exception or pass it on to the next handler. The list isegto

the shellcode will inevitably perform several memory asessto
the address space ker nel 32. dl | in order to check whether
each 64KB-aligned address corresponds to the base addtégs o
DLL. In our experiments with typical code injection attadk&Vin-
dows XP, the shellcode performed at least four memory raads i
kernel 32.dl | . Thus, after the first two conditions have been
met, we expect to encountéB3): at least one memory read form
the address space &kr nel 32. dl | .

3.2 Process Memory Scanning

Some memory corruption vulnerabilities allow only a lindite
space for the injected code—usually not enough for a fulhcfu
tional shellcode. In most such exploits though the attackerin-
ject a second, much larger payload which however will land at
random, non-deterministic location, e.g., in a bufferedlied in the
heap. The first-stage shellcode can then sweep the addeessap
the process and search for the second-stage shellcod&ifalan
as the “egg”), which can be identified by a long-enough charac
istic byte sequence. This type of first-stage payload is knas/
“egg-hunt” shellcode [28].

Blindly searching the memory of a process in a reliable way re
quires some method of determining whether a given memorg pag
is mapped into the address space of the process. In the riss of

on the stack of each thread, and each node is a SEH frame thasection, we describe two known memory scanning technigoés a

consists of two pointers to the next frame and the actual leand
routine. Figure 3 shows a typical snapshot of the TIB and tifneks
memory areas of a process with two SEH handlers. A pointédreto t
current SEH frame exists in the first field of the Thread Infation
Block and is always accessible throug8: [ 0] .

At the end of the SEH chain (bottom of the stack) there is a de-
fault exception handler that is registered by the systenetery
thread. TheHandl er pointer of this SEH record points to a rou-
tine that is located itlker nel 32. dI | , as shown in Fig. 3. Thus,
the shellcode can start froR: [ 0] and walk the SEH chain un-
til reaching the last SEH frame, and from there get a pointer i
kernel 32. dl | byreading itHandl er field.

Another technique to reach the last SEH frame, known as “TOP-
STACK” [27], uses the stack of the exploited thread. The difa
exception handler is registered by the system during thoeed
ation, making its relative location from the bottom of thack
fairly stable. Although the absolute address of the stack vaay,

a pointer to the bottom of the stack is always found in the séco
field of the TIB atFS: [ 0x4] . TheHandl er pointer of the de-
fault SEH handler can then be found 0x1C bytes into the stxk,
shown in Fig. 3. In fact, the TIB contains a second pointeht® t
top of the stack afS: [ 0x8] .

Condition B1. Based on the same approach as in the previous
section, the first condition for the detection heurigBACK WD)

that matches the “backwards searching” method is the fahigw
(B1): (i) any of the linear address betweé&i®: [ 0] —FS: [ 0x8]

is read, and (ii) the current or any previous instructionahwed the

FS register The rationale is that a shellcode that uses the back-
wards searching technique should unavoidably read eijhibrei
memory location aES: [ 0] for walking the SEH chain, or ii) one

of the locations aFS: [ 0x4] andFS: [ 0x8] for accessing the
stack directly.

Condition B2. In any case, the code will reach the default excep-
tion record on the stack and read Handl er pointer. Since this

is a mandatory operation for landing inkeer nel 32. dl | , we
can use this dependency as our second cond{B&: the linear
address of thédandl er field of the default SEH handler is read

Condition B3. Finally, during the backwards searching phase,

the corresponding detection heuristics that can captesethehav-
iors, and thus, identify the execution of egg-hunt shekcod

3.21 SEH

The first memory scanning technique takes advantage ofrilne st
tured exception handling mechanism and relies on insgpdlinus-
tom exception handler that is invoked in case of a memorysscce
violation.

Condition S1. As discussed in Sec. 3.1.2, the list of SEH frames
is stored on the stack, and the current SEH frame is always ac-
cessible througltS: [ 0] . The first-stage shellcode can register a
custom exception handler that has priority over all presiban-
dlers in two ways: create a new SEH frame and adjust the durren
SEH frame pointer of the TIB to point to it [28], or directly o

ify the Handl er pointer of the current SEH frame to point to the
attacker’s handler routine. In the first case, the shellcodst up-
date the SEH list head pointer BS: [ 0] , while in the second
case, it has to access the current SEH frame in order to modify
its Handl er field, which is only possible by reading the pointer
atFS: [ 0] . Thus, the first condition of the SEH-based memory
scanning detection heurist{€8EH) is (S1): (i) the linear address

of FS: [ 0] is read or written, and (ii) the current or any previous
instruction involved th&S register.

Condition S2. Another mandatory operation that will be encoun-
tered during execution is that thdandl er field of the custom
SEH frame (irrespectively if its a new frame or an existingg)on
should be modified to point to the custom exception handle+ ro
tine. This operation is reflected by the second condi(&®): the
linear address of theélandl er field in the custom SEH frame is or
has been writtenNote that in case of a newly created SEH frame,
the Handl er pointer can be written before or aftéS: [ 0] is
modified.

Condition S3. Although the above conditions are quite constrain-
ing, we can apply a third condition by exploiting the factttbpon

the registration of the custom SEH handler, the linked lissBH
frames should be valid. In the risk of stack corruption, theep-

tion dispatcher routine performs thorough checks on thegiity

of the SEH chain, e.g., ensuring that each SEH frame is dword-



1 push edx ; preserve edx across systemcall

2 push 0x8

3 pop eax ; eax = Nt AddAt om

4 int O0x2e ; systemcall

5 cnp al, 0x05 ; check for STATUS ACCESS VI OLATI ON
6 pop edx ; restore edx

Figure 4: A typical system call invocation for checking if the
supplied addressisvalid.

aligned within the stack and is located higher than the preyi
SEH frame [21]. Thus, the third condition requires t{&8): start-

ing fromFS: [ 0] , all SEH frames should reside on the stack, and
theHandl er field of the last frame should be set to OXFFFFFEFF
In essence, the above condition validates that the custowildra
registration has been performed correctly.

3.2.2 System Call

The extensive abuse of the SEH mechanism in various mem-
ory corruption vulnerabilities led to the introduction Gdf8SEH, a
linker option that produces a table with all the legitimateeption
handlers of the image. In case the exploitation of some EifeS
protected vulnerable application requires the use of egg-shell-
code, an alternative but less reliable method for safelyirsiog
the process address space is to check whether a page is mapped
before actually accessing it—using a system call [27, 28. ah
ready discussed, although the use of system calls in Windbels

code is not common, since they are prone to changes between O%in

versions and do not provide crucial functionality such asvoek
access, they can prove useful for determining if a memoryessd
is accessible.

Some Windows system calls accept as an argument a pointer to

an input parameter. If the supplied pointer is invalid, t&tem call
returns with a return value dBTATUS_ACCESS_ VI OLATI ON.
Thus, the egg-hunt shellcode can check the return valueecyts
tem call, and proceed accordingly by searching for the eggow-
ing on to the next address [28]. In Windows, a system calliis in
tiated by generating a software interrupt throughitime Ox2e
instruction.

Figure 4 shows a typical code that checks the address stored i
edx using theNt AddAt omsystem call. In Windows, a system
call is initiated by generating a software interrupt thriodlgei nt
Ox2e instruction (line 4). The actual system call that is going¢o
executed is specified by the value stored inelaex register (line
3). Upon return from the system call, the code checks if therme
value equals the code f@TATUS_ACCESS VI OLATI ON. The
actual value of this code is 0xC0000005, but checking ong th
lower byte is enough in return for more compact code (line 5).

Condition C1. System call execution has several constraints that
can be used for deriving a detection heuristic for this kiheégg-
hunt shellcode. First, the immediate operand ofithe instruction
should be set to Ox2E. Looking just for thet 0x2e instruction

is clearly not enough since any two-byte instruction wildmeoun-
tered roughly once every 64KB of arbitrary binary input. Hwer,
when encountering annt 0x2e instruction that corresponds to
an actual system call execution, thbx register should also have
been previously set to the proper system call number.

The publicly available egg-hunt shellcode implementatiare
found (see Sec. 5.1) use one of the following system cistlgic-
cessCheckAndAudi t Al ar m(0x2), Nt AddAt om (0x8), and
Nt Di spl ayStri ng (0x39 in Windows 2000, 0x43 in XP, 0x46
in 2003 Server, and 0x7F in Vista). The variability of thetsys
call number forNt Di spl ayStri ng across the different Win-
dows versions is indicative of the complexity introducedimex-

ploit by the direct use of system calls. Based on the aboveca n
essary condition during the execution of a system call intagy
shellcode i{C1): the execution of ahnt 0x2e instruction with
theeax register set to one of the following values: 0x2, 0x8, 0x39,
0x43, 0x46, OX7F

Condition C2. As shown in Sec. 5.2.2, condition C1 alone can
happen to hold true during the execution of random codegadth
rarely. However, the heuristic can be strengthened basetieon
following observation. The egg-hunt shellcode will havestan a
large part of the address space until it finds the egg. Evemwhe
assuming that the egg can be located only at the beginning of a
page [37], the shellcode will have to search hundreds orstds
of addresses, e.g., by repeatedly calling the code in Figadaop.
Hence, condition C1 will hold several times. The detectienris-
tic (SYSCALL) can then be defined as a meta-conditf@{N}):
C1 holds true N timesAs shown in Sec. 5.2.2, a value of N = 2
does not produce any false positives.

In case other system calls can be used for validating arranpit
address, they can easily be included in the above condiBtamt-
ing from Windows XP, system calls can also be made using the
more efficientsysent er instruction if it is supported by the sys-
tem’s processor. The above heuristic can easily be exteldddo
support this type of system call invocation.

3.3 SEH-based GetPC Code

Before decrypting itself, polymorphic shellcode needs tst fi

d the absolute address at which it resides in the addres=sp
of the vulnerable process. The most widely used types of GetP
code for this purpose rely on some instruction from ¢faé | or

f st env instruction groups [23]. These instructions push on the
stack the address of the following instruction, which cagntie
used to calculate the absolute address of the encrypted Eaode
ever, this type of GetPC code cannot be used in purely alphanu
meric shellcode [19], because the opcodes of the requisttlint
tions fall outside the range of allowed ASCII bytes. In suebkes,
the attacker can follow a different approach and take adgegnof

the SEH mechanism to get a handle to the absolute memoryssddre
of the injected shellcode [30].

When an exception occurs, the system generates an exception
record that contains the necessary information for hagdlie ex-
ception, including a snapshot of the execution state of iheat,
which contains the value of the program counter at the tinge th
exception was triggered. This information is stored on tlaeks
so the shellcode can register a custom exception handiggetr
an exception, and then extract the absolute memory addféiss o
faulting instruction. By writing the handler routine on theap,
this technique can work even in Windows XP SP3, bypassing any
SEH protection mechanisms [30].

In essence, the SEH-based memory scanning detection -heuris
tic described in Sec. 3.2.1 does not identify the scannirfger
per se, but the proper registration of a custom exceptionlban
Although this is an inherent operation of any SEH-basedlegg-
shellcode, any shellcode that installs a custom exceptéorler
can be detected, including polymorphic shellcode that Gd#&d-
based GetPC code.

4. IMPLEMENTATION

We have implemented the proposed detection method in Gene, a
network-level attack detector that uses a custom IA-32 atauto
identify the presence of shellcode in network streams. Genas
the client-initiated part of each TCP connection using th@ime
heuristics presented in this work. For evaluation purpoad#th



GetPC-based self-decrypting shellcode similar to the sl un Metasploit B Gene [ GetPC

existing detectors [9, 23, 38] can be enabled at will. Siheeex- (Polymorphic) —15/15
act location of the shellcode in the input data is not knowadn 15 samples 15/15
vance, the emulator repeats the execution multiple tintestirsg Metasploit (Plain) —15/15
from each and every position of the stream. In certain céseg, 15 samples | 0/15
ever, the execution of some code paths can be skipped toiaptim Nepenthes H 17120

samples

runtime performance [24].

The heuristics used in Gene are mostly based on memory ac- Individual Samples Fsﬂ%
33 samples 4/33
T T T T

cesses to certain locations in the address space of a viole&kén-
dows process. To emulate correctly the execution of thesesaes,

the virtual memory of the emulator is initialized with an igeaof

the complete address space of a typical Windows XP prockss ta
from a real system. The image consists of 971 pages (4KB gach)

including the stack, heap, PEB/TIB, and loaded modulesfohit Figure 5: Number of shellcodes detected by Gene and the ex-
heuristics use the same memory image and thus can be edhiniate  15tiNg GetPC-based heuristic [9, 23, 38] for different shellcode
parallel during execution. sets. From a total of 83 different shellcode implementations,

Among other initializations before the beginning of a newe-ex ~ Genedetected 78 samples (94%), compared to 34 (41%) for the

cution [23], the segment registeS is set to the segment selector G€tPC heuristic.
corresponding to the base address of the Thread InformBtak,

the stack pointer is set accordingly, while any changesemtlyi-

nal process image from the previous execution are reverted.

The runtime evaluation of the heuristics requires keepomges
state about the occurrence of instructions with an operaatiin-
volved theFsS register, as well as about read and write accesses
to the memory locations specified in the heuristics. Regarthie
SEH-based memory scanning heuristic (Sec. 3.2.1), alth&&H
chain validation is more complex compared to other instmtae
tion operations, itis triggered only if conditions S1 anda8@ true,
which in practice happens very rarely.

When ani nt 0x2e instruction is executed, theax register
is checked for a value corresponding to one of the systens call
that can be used for memory scanning, as described in Seg. 3.2
Although the actual functionality of the system call is noiidated,
the proper return value is stored in thax register depending on
the validity of the supplied memory address. In case of anr egg
hunt shellcode, this behavior allows the scanning loop tdinae
normally, resulting to several system call invocations.

T 1
20 40 60 80 100

Detected shellcodes (%)

o

erly. By manually unpacking the two payloads and scanniegith
with Gene, in both cases the shellcode was identified by tHg PE
heuristic. From the rest 20 shellcodes, 16 were identifiethlby
PEB heuristic, and one, named “Saalfeld,” by the SEH hearist
The Saalfeld shellcode is of particular interest due to $eaf a
custom SEH handler although it is not an egg-hunt shellcdte.
SEH handler is registered for safely searching the addpeseof
the vulnerable process starting from address 0x77E000@l0 thve
aim to reliably detect the base addressef nel 32. dl | . The
SEH heuristic identifies the proper registration of a cus®iEH
handler, so the shellcode was successfully identified.

The remaining three shellcodes were missed due to the use of
hard-coded addresses, e.g., the linear addrdssrafel 32. dl | ,
instead of reliable base address resolution. It would héatrio
implement another detection heuristic similar to the PEBrise
tic based on commonly used hard-coded addresses in plack of a
dressing based on th€S register to detect this kind of shellcode.
However, these samples correspond to quite old attackshasd t
style naively implemented kind of shellcode is now encorede

5. EXPERIMENTAL EVALUATION rarely. From the 20 shellcodes, 15 are self-decrypting aadhas
. . detected by the GetPC-based heuristic.
5.1 Detection Effectiveness Besides a few proof-of-concept implementations [5, 27]aluhi
We began our evaluation with the shellcodes contained in the are identified correctly by Gene, we were not able to find ahgrot
Metasploit Framework [2]. For Windows targets, Metasploit shellcode samples that locater nel 32. dl | using backwards

cludes six basic payloads for downloading and executingea fil searching, probably due to the simplicity of the alterr@tREB-
spawning a shell, adding a user account, and so on, as weli@s n based technique. In addition to the Saalfeld shellcode Sthiel
“stagers.” In contrast to an egg-hunt shellcode, whichctezs for heuristic detected a proof-of-concept SEH-based egg-inypie-
a second payload that has already been injected into thenailn ~ mentation [28], as well as the “omelet” shellcode [36], ag-bgnt

ble process along with the egg-hunt shellcode, a stagerlissias variation that locates and recombines multiple smallerseigtp
a channel between the attacking and the victim host for ubloa the whole original payload. The SEH heuristic was also &ffec
ing other second-stage payloads. We generated plain rfpe-, in detecting polymorphic shellcode that uses SEH-base®Get

encrypted) instances of the above 15 shellcodes, as welh-as a code [30], which is currently missed by existing payloadoexi®n
other 15 polymorphic instances of the same shellcodes ubg  systems. The SYSCALL heuristic was tested with three diffier
ShikataGaNai encoder. As shown in Fig. 5, both Gene and the egg-hunt shellcode implementations [27,28,37], whicheigenti-
GetPC-based heuristic detected the polymorphic versiéribeo fied correctly. In addition to these eight shellcode implatagons,

shellcodes. However, the original (plain) versions do ndtilat we gathered more Windows shellcode samples from publicsrepo
any self-decrypting behavior and are thus detected only &yeG itories [1, 3, 4], totaling 33 different samples. As showrFig. 5,
For both plain and polymorphic versions, Gene identifiedstie|- the GetPC-based heuristic detected only four of the stidlethat

code using the PEB heuristic. The use of the PEB-based methoduse simple XOR encryption, while Gene detected all but twihef

for locatingker nel 32. dl | is probably preferred in Metasploit  samples, again due to the use of hard-coded addresses.

due to its reliability. Finally, as an extra verification experiment, we tested Geitte
We continued our evaluation with 22 samples downloaded from a large dataset of real polymorphic attacks captured inymtozh

the shellcode repository of the Nepenthes Project [6]. Thvihe networks by Nemu [22]. Without using any self-decryptionitig-

samples had a broken decryptor and could not be executed prop tic, this data set allows us to test the effectiveness of Geiden-



tifying the actual plain shellcode after the decryptiongass has
completed. Gene analyzed more than 1.2 million attacks;wéi-

ter the decryption process resulted to 98,602 unique pdy)and
in all cases it identified the decrypted plain shellcodeaxity. Not

surprisingly, all shellcodes were identified by the PEB Fetiar.

5.2 Heuristic Robustness

5.2.1 False Positives Evaluation

We tested the robustness of the heuristics against falstvpes
using a large and diverse set of benign inputs. For our fistex
ment, we captured the internal and external traffic in tweaesh
and educational networks and kept the client-initiatedastr of
each TCP flow, since currently Gene detects only attacksisiai
network services. Collectively, the data set consists & biillion
streams, totaling more than 48GB of data. Depending onzés ai
stream can have from a few hundreds to many thousands ofiralid
struction sequences which are all analyzed independentGemne.
Thus, we consider as a false positive any benign input witbast
one instruction sequence that matches one of the heurigtihen
scanning the 15.5 million streams of this data set with Geoage
of the inputs matched any of the heuristics, resulting to Zaise
positives.

Seeking more evidence for the resilience of the heurisegst
false positives, we continued the experiments with a mudelta
set of artificially generated benign data. The purpose af éx-
periment is to ensure that the random 1A-32 machine codeighat
derived by interpreting arbitrary data as code does notmaaiyg of
the heuristics. For this purpose, we used a script that mootisly
generates inputs of random binary and ASCII data that arsesub
quently scanned by Gene. The script generated 20 milliorB32K
inputs of each type, totaling more than 1.3TB of data. Themate
behind using inputs consisting of random ASCII characterad-
dition to random binary data, is to approximate the randoieco
found in network streams that use text-based protocolsil&iyn
to the previous experiment, the false positive rate wasdgsit at
zero.

5.2.2 Heuristic Analysis

We repeated the experiments of the previous section withithe
to explore in depth the behavior of the heuristics when dpeyan
benign data. This time we measured the number of inputs with a
least one instruction sequence that matched the first, steio,
or all three conditions of a heuristic.

Figure 6(a) shows the percentage of network streams thahetit
a given number of conditions. Out of 15.5 million inputs, o8P
(0.0005%) had an instruction sequence with a memory acoess t
FS: [ 0x30] through theFS register—satisfying the first condi-
tion of the PEB heuristic. There were no streams that matbbéd
the first and the second or all three conditions, which is ango
ing indication for the robustness of the PEB heuristic saitthree
conditions must be true for flagging an input as shellcodee Th
SYSCALL heuristic had a similar behavior, with just 51 of ihe
puts (0.0003%) exhibiting a single system call invocatiahile
there were no streams with two or more system calls.

A much larger number of streams matched the first condition of
the BACKWD and SEH heuristics (8,620 and 41,063 streams, re-
spectively). In both heuristics, the first condition inasda mem-
ory access td=S: [ 0] , which seems to appear more frequently
in random code compared to accesseb&it[ 0x30] . A possi-
ble explanation for this is that the effective address cdatpn in
the memory operand of some instruction can result to zero avit
higher probability compared to other values. For exampleerw
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Figure7: Theraw processing throughput of Gene for different
execution thresholds.

anov ebx, fs:[eax] instruction is executed, it is more likely
thateax will have been zeroed out, e.g., due to a previous two-
byte longxor eax, eax instruction, instead of being set to 0x30.
However, the percentage of inputs that matched both theafiict
the second condition is very low (0.0003% and 0.0004%, @spe
tively), and no inputs matched all three conditions.

As shown in Fig. 6(b), the overall behavior when operating on
random binary data is comparable to that for network strearitis
no inputs fully matching any of the heuristics. However, ASCI|
data (Fig. 6(c)), although the first condition in the PEB, BAED,
and SEH heuristics matched in roughly 0.03% of the inpueseth
were no inputs matching any of the subsequent conditions.oph
code for the nt instruction falls outside the ASCII range, so no in-
put matched not even the first condition of the SYSCALL hdiaris
Overall, all heuristics seem to perform even better whemaijey
on ASCII data.

5.3 Runtime Performance

We evaluated the processing throughput of Gene using the rea
network traffic traces presented in Sec. 5.2.1. Gene wasngiomn
a system with a Xeon 1.86GHz processor and 2GB of RAM. Fig-
ure 7 shows the raw processing throughput of Gene for diffene-
ecution thresholds. The throughput is mainly affected leyrthm-
ber of CPU cycles spent on each input. As the execution thtésh
increases, the achieved throughput decreases becauseemore
lated instructions are executed per stream. A thresholdeiotder
of 8-16K instructions is sufficient for the detection of plais well
as the most advanced polymorphic shellcodes [24]. For port 8
traffic, the random code due to ASCII data tends to form loRg in
struction sequences that result to degraded performampared
to binary data.

The overall runtime throughput is slightly lower compareex-
isting emulation-based detectors [23,24] due to the oaetlaelded
by the virtual memory subsystem, as well as because Gene does
not use the zero-delimited chunk optimization used in trese
tems [23]. Previous approaches skip the execution of zgiede-
limited regions smaller than 50 bytes, with the rationakt thost
memory corruption vulnerabilities cannot be exploited attack
vector contains null bytes. However, the detection hdossbf
Gene can identify shellcode in other attack vectors thateoayain
null bytes, such as document files. Furthermore, our approac
be applied in other domains [14, 15], for example for the clata
of client-side attacks, in which the shellcode is usuallgrgpted
at a higher level using some script language, and thus canlle f
functional even if it contains null bytes.
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Figure 6: False positives evaluation with (a) 15.5 million real network streams (48GB total data size), (b) 20 million randomly
generated binary inputs (650GB), and (c) 20 million randomly generated ASCII inputs (650GB). For all heuristics, none of the

inputsmatched all three conditions, resulting to zero false positives.

In practice, Gene can monitor high speed links when scanning
for server-side attacks because client-initiated trafegjests) is
usually a fraction of the server-initiated traffic (respes)s In our
preliminary deployments in production networks, Gene czans
traffic of up to 100 Mbit/s without dropping packets. Furtinere,
Gene currently scans the whole input blindly, without anpwh
edge about the actual network protocol used. Augmentingnthe
spection engine with protocol parsing would significanthprove
the scanning throughput by inspecting each protocol fiefthse
rately.

5.4 Real-world Deployment

We have deployed Gene in two University networks, where it

dows shellcode, or alternative techniques to those on withieh
heuristics are based, that may have missed our attentioavar h
not been publicly released yet. Nevertheless, the arthieof
Gene allows the parallel evaluation of multiple heuristarsd thus
the detection engine can be easily extended with more hiesris
for other shellcode types. For example, for our experimeval-
uation, we have already implemented a fifth heuristic basethe
widely used GetPC code technique used in existing polymorph
shellcode detectors [23, 24, 38]. In our future work, we ptam-
plement heuristics for the detection of the code requiredswarm
attack [13], Linux-specific plain shellcode, Windows sbetle that
uses hard-coded addresses, and so on.

A well known evasion technique against dynamic code arglysi

has been operational since 25 November 2009. In these two de-Systems is the use of very long loops that force the detectpend

ployments, Gene scans the traffic between the internal mietaval
the Internet, as well as the traffic between selected intstimets.
As of 17 April 2010, Gene has detected 116,513 code injection
tacks against internal and external hosts in these two mkswal-
though we cannot know how many of the attacks actually iefict
the targeted host, since many systems might had been pséviou
patched, in all cases the attacker was able to connect addisen
malicious input to the potentially vulnerable service. Akhone
third of the attacks were launched from internal PCs, priybak
ready infected by malware. About 86% of the attacks targptet
445, while there were also attacks against ports 80, 135, dr89
2967.

In both deployments, Gene uses the four new heuristics pre-
sented in this paper, as well as the GetPC heuristic usedstirgx
polymorphic shellcode detectors, allowing us to compaeeittec-
tion coverage of both approaches. The PEB heuristic maiohatl
of the attacks, supporting the fact that this is the most lyideed
technique for resolvinger nel 32. dl | . However, the GetPC
heuristic was triggered only by 85,144 attacks, i.e., 39 @facks
(27%) did not use any form of self-decrypting shellcode. sThi
means that the ability of Gene to detect plain shellcodecased
the detection coverage for server-side code injectiockdtay 37%
compared to existing polymorphic shellcode detection aaghes.
By statically analyzing the identified machine code [22] vaac
firmed that in all cases it corresponds to actual shellcausa far
we have not encountered any false positives.

6. DISCUSSION

The runtime heuristics presented in this paper allows Gene t
detect a broad range of different shellcode classes. Okepwe
cannot exclude the possibility that there are other kindsVof-

countless cycles until reaching the execution threshatbrie any
signs of malicious behavior are shown [32]. Gene uses iefiadp
squashing [23] to reduce the number of inputs that reachxbe e
cution threshold. As stated in the literature [23, 24], thecpntage
of inputs with an instruction sequence that reaches theutixec
threshold ranges between 3-6%, which we also verified dahnieg
experiments of this paper. Since this is a small fractionlloiha
spected inputs, the endless loops in these sequences eatiglbt
be analyzed further at a second stage using other technégabs
as static analysis or symbolic execution [25].

Another inherent limitation of emulation-based shellcdétec-
tion is the lack of an accurate view of the system’s stateatithe
the injected code would run on the victim system. This infation
includes the values of the CPU registers, as well as the aimati-
dress space of the particular exploited process [10, 2Zhotigh
register values can sometimes be inferred [24], and Genaentg
the emulator with the complete address space of a typicatlb\iie
process, which includes the most common system DLLs used by
Windows shellcode, the shellcode may perform memory aesess
to application-specific DLLs that are not known in advanag] a
thus cannot be followed by the emulator [16]. Fortunatelgew
protecting specific services, exact memory images of eaclicse
can be used in place of the generic process image. However, as
already discussed, since the linear addresses of DLLs elguite
often across different systems, and due to the increasiogtiat
of address space layout randomization and DLL rebasingidbe
of absolute addressing results to less reliable shellcdgdi.the
other hand, when the emulator runs within the context of a pro
tected application, as for example in the browser-embedeést-
tor proposed by Egele et al. [14], the emulator can have &aéas
to the complete address space of the process.



Some of the operations matched by the heuristics, such as theweb pages based on various indications, including the pcesef

registration of a custom exception handler, might also lbadoin
legitimate executables. However, Gene is tailored for sicanin-
puts that otherwise should not contain executable IA-32cdd
case of file uploads, Gene can easily be extended to idenmtdy a
extract executable files by looking for executables’ hemdtethe
inspected traffic, and then pass them on to a virus scanner.

7. RELATED WORK

Having realised the limitations of signature-based apgrea in
the face of polymorphic code and targeted attacks, sevesabhrch
efforts turned to static binary code analysis for identifythe pres-

ence of shellcode in network streams. One of the first such ap-
proaches by Toth and Kruegel uses code disassembly on hetwor

streams to identify the NOP-sled that sometimes preceéesht|-
code [33]. Focusing on the shellcode itself, Anderson ef&l.
propose to scan each input for multiple occurrences ofunstm

sequences that end with ant 0x80 instruction for the identifi-
cation of Linux shellcode, with the rationale that the stmdle will

have to execute several system calls. Other detection anethat
use static code analysis aim to detect previously unknownmmpm-

phic shellcode based on the identification of structurallanities

among different worm instances [17], control and data floalygn
sis [12, 34, 35], or neural networks [20].

However, methods based on static analysis can be easilg@vad
by malicious code that uses obfuscation methods such agandi
jumps and self-modifications [23], which are widely used hy-c
rent malware packers and polymorphic shellcode enginesonn
trast, emulation-based detection can correctly handla exéen-
sively obfuscated malicious code [23]. Polychronakis etpb-
pose the use of code emulation for the detection of self gécry
ing shellcode at the network level [23, 24]. The detectiagoal

rithm is based on the identification of the GetPC code and the

self-references that take place during the execution ofstedl-
code. Zhang et al. propose to combine network-level enmrati
with static and data flow analysis for improving the runtinesfpr-
mance of the GetPC heuristic [38].

Li benu [9] is an open-source x86 emulation library tailored to
shellcode analysis and detection. Shellcode executiateistified
using the GetPC heuristit.i benu can also emulate the execution
of Windows API calls by creating a minimalistic process eowmt
ment that allows the user to install custom hooks to API fiamst
Although the actual execution of API functions can be usedras
indication for the execution of shellcode, these actiorishei ob-
served only afteker nel 32. dl | has been resolved and the re-
quired API functions have been located through the EDT or. IAT
Compared to th&er nel 32. dl | resolution heuristics presented
in Section 3.1, this technique would require the executfaruch
larger number of instructions until the first API functiondalled,
and also the emulation of the actual functionality of each éd#l
thereafter. This means that the execution threshold of éectbr
should be set much higher, resulting to degraded runtim@per

shellcode. The CPU emulator in both projects is basdd drernu.

Shellcode analysis systems help analysts study and uaddrst
the structure and functionality of a shellcode sample. Va&l.g¢18]
used code emulation to extract the actual runtime instncsie-
quence of shellcode samples captured in the wild. Spectpufes
symbolic execution to extract the sequence of library cabsle by
the shellcode, along with their arguments, and at the endhef t
execution generates a low-level execution trace. YatagR im-
proves the analysis capabilities of Spector by handlinglciae
that uses memory-scanning attacks.

8. CONCLUSION

The increasing professionalism of cyber criminals and & v
number of malware variants and malicious websites makedhd n
for effective code injection attack detection a criticablténge.
To this end, shellcode detection using payload executiderof
important advantages, including generic detection witleyploit
or vulnerability-specific signatures, practically zertséapositives,
while it is effective against targeted attacks.

In this paper we present a comprehensive shellcode deatectio
method based on code emulation. Our approach expands tpe ran
of malicious code types that can be detected by enablingattzdiel
evaluation of multiple runtime heuristics that match irdrgrlow-
level operations during the execution of different shelledypes.
The runtime heuristics presented in this work enable thecgffe
detection of plain and metamorphic shellcode, both of wiaih
not identified by existing shellcode detectors. This is exdil re-
gardless of the use of self-modifying code or dynamic code ge
eration, on which existing emulation-based polymorphiellsbde
detectors are exclusively based.

Our experimental evaluation shows that the proposed approa
can effectively detect a broad range of diverse shellcopestand
implementations, increasing significantly the detectionecage
compared to existing emulation-based detectors, whilensite
testing with a large set of benign data did not produce argefal
positives. Gene, our prototype implementation of the psepo
technique for the detection of server-side code injectitachks de-
tected 116,513 attacks against production systems in adoefi
almost five months without false positives.

Although Gene currently operates at the network level, tioe p
posed detection heuristics can be readily implemented irlaion-
based systems in other domains, including host-level dicgiipn-
specific detectors. As part of our future work, we plan to iempént
more heuristics to cover the detection of less widely useticide
types, such as shellcode that uses hard-coded addresdesx-an
plore the design of a description language that would expede
development of new heuristics.
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