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Abstract

Malware writers constantly seek new methods to obfus-
cate their code so as to evade detection by virus scanners.
Two code-armoring techniques that pose significant chal-
lenges to existing malicious-code detection and analysis
systems areunpackingand run-time polymorphism.In this
paper, we demonstrate how malware can increase its ro-
bustness against detection by taking advantage of the ubiq-
uitous Graphics Processing Unit. We have designed and
implemented unpacking and run-time polymorphism for a
GPU, and tested them using existing graphics hardware. We
also discuss how upcoming GPU features can be utilized to
build even more robust, evasive, and functional malware.

1 Introduction

Computer viruses, bot clients, rootkits, and other types
of malicious software, collectively referred to asmalware,
abuse infected hosts to carry out their malicious activities.
From the first viruses written directly in assembly language,
to application-specific malicious code written in high-level
languages like javascript, any action of the malware results
in the execution of machine code on the compromised sys-
tem’s processor.

Besides the central processing unit, modern personal
computers are equipped with another powerful computa-
tional device: the graphics processing unit (GPU). Histori-
cally, the GPU has been used for handling 2D and 3D graph-
ics rendering, effectively offloading the CPU from these
computationally-intensive operations.

Driven to a large extent by the ever-growing video
game industry, graphics processors have been constantly
evolving, increasing both in computational power and in
the range of supported operations and functionality. The
most recent development in the evolution chain is general-
purpose computing on GPUs (GPGPU), which allows pro-
grammers to exploit the massive number of transistors in
modern GPUs to perform computations that up till now
were traditionally handled by the CPU. In fact, leading ven-

dors like AMD and NVIDIA have released software devel-
opment kits that allow programmers to use a C-like pro-
gramming language to write general-purpose code for exe-
cution on the GPU [2,13]. GPGPU has been used in a wide
range of applications, while the increasing programmability
and functionality of the latest GPU generations allows the
code running on the GPU to fully cooperate with the host’s
CPU and memory.

Given the great potential of general-purpose computing
on graphics processors, it is only natural to expect that mal-
ware authors will attempt to tap the powerful features of
modern GPUs to their benefit [14]. Two key factors that
affect the lifetime and potency of sophisticated malware
are its ability to evade existing anti-malware defenses and
the effort required by a malware analyst to analyze and un-
cover its functionality—often a prerequisite for implement-
ing the corresponding detection and containment mecha-
nisms. Packing and polymorphism are among the most
widely used techniques for evading malware scanners [17].
Code obfuscation and anti-debugging tricks are commonly
used to hinder reverse engineering and analysis of (mali-
cious) code [6].

So far, these evasion and anti-debugging techniques take
advantage of the intricacies of the most common code ex-
ecution environments. Consequently, malware defense and
analysis mechanisms, as well as security researchers’ ex-
pertise, focus on IA-32, the most prevalent instruction set
architecture (ISA). The ability to execute general purpose
code on the GPU opens a whole new window of opportunity
for malware authors to significantly raise the bar against ex-
isting defenses. The reason for this is that existing malicious
code analysis systems primarily support IA-32 code, while
the majority of security researchers are not familiar with the
execution environment and ISA of graphics processors.

In this paper, we aim to raise awareness about the wor-
risome potential of GPU-assisted malware. To that end, we
demonstrate the feasibility of implementing malware that
utilizes the GPU to armor its code. Specifically, we present
the design and implementation of GPU-based unpacking
and runtime polymorphism, two techniques that pose sig-
nificant challenges to existing malware detection and anal-



ysis systems. Furthermore, we discuss potential attacks
and future threats that can be facilitated by next-generation
GPGPU architectures.

We believe that a better understanding of the offensive
capabilities of attackers can lead researchers to create more
effective and resilient defenses.

2 GPGPU Programming

General-purpose computing on graphics processing units
has drastically evolved in recent years. As graphics pro-
cessors started becoming more powerful, programmers be-
gan exploring ways for enabling their applications to take
advantage of the massively parallel architecture of modern
GPUs.

Standard graphics APIs, such as OpenGL and DirectX,
do not expose much of the underlying computational capa-
bilities that graphics hardware can provide. The task of us-
ing these APIs for general-purpose computation poses chal-
lenges when non-graphics applications are attempted to be
ported to the GPU. Data and variables have to be mapped
to graphics objects, while algorithms must be expressed
as pixel or vertex shaders, pretending to perform graphics
transformations. The lack of convenient data types, basic
computational functionality, and a generic memory access
model renders this environment far from attractive for de-
velopers accustomed to working in traditional programming
environments.

The Compute Unified Device Architecture (CUDA) in-
troduced by NVIDIA [13] is a significant advance, expos-
ing several hardware features that are not available via the
graphics API.1 CUDA consists of a minimal set of exten-
sions to the C language and a runtime library that pro-
vides functions to control the GPU from the host, as well
as device-specific functions and data types.

At the top level, an application written for CUDA con-
sists of a serial program running on the CPU, and a parallel
part, called akernel, that runs on the GPU. A kernel, how-
ever, can only be invoked by a parent process running on
the CPU. As a consequence, a kernel cannot be initiated
as a stand-alone application, and it strongly depends on the
process that invokes it.

Each kernel is executed on the device as many differ-
ent threadsorganized in threadblocks. The thread blocks
are executed by themultiprocessorsof the GPU in parallel.
Each multiprocessor consists of eightstream processors,
operating on a SIMD fashion. In order to maximize the use
of the multiprocessors’ computational resources, a thread
scheduler periodically switches from one thread block to
another.

In addition to program execution, CUDA also provides
appropriate functions for data exchange between the host

1AMD offers a similar SDK for its ATI line of GPUs [2].

Figure 1. A GPU-assisted malware binary.

and the device. All I/O transactions are performed over
the PCI Express bus. Furthermore, memory operations can
be performed through DMA in order to facilitate concur-
rent execution between the CPU and the GPU. A block of
page-locked host memory can also be mapped into the ad-
dress space of the GPU, enabling the program running on
the CPU and the kernel executing on the GPU to directly
access the same data.

From the perspective of the malware author, a GPU-
assisted malware binary contains code destined to run on
different processors, as shown in Figure 1. Upon execution,
the malware loads the device-specific code on the GPU, al-
locates a memory area accessible by both the CPU and the
GPU and initializes it with any shared data, and schedules
the execution of the GPU code. Depending on the design,
the flow of control can either switch back and forth between
the CPU and the GPU, or separate tasks can run in parallel
on both processors.

A major advantage for the malware author is that the
malware can be statically linked with the CUDA library
into a single stand-alone executable. Thus, the malware be-
comes completely self-contained, without the need to install
any files on the infected system. Furthermore, the execution
of GPU code, as well as data transfers between the host and
the device do not require any administrator privileges. In
other words, the malware will run successfully even under
user privileges, making it more robust and deployable.

3 Proof-of-Concept Implementation

Malware can exploit the rich functionality of modern
GPUs in an plethora of ways. In this section, we describe
the design and implementation of two code-armoring tech-
niques based on GPU code. These prototypes not only
demonstrate the feasibility of GPU-assisted malware, but
also already pose significant challenges to existing malware
analysis and detection systems.

We have chosen to implement our prototypes using
NVIDIA CUDA [13], the most widely used GPGPU frame-



.entry _Z8unpckrPhii (
.param .u32 __cudaparm__Z8unpckrPhii_a,
.param .s32 __cudaparm__Z8unpckrPhii_N,
.param .s32 __cudaparm__Z8unpckrPhii_key)

{
.reg .u32 %r<12>;
.reg .pred %p<4>;
.loc 28 31 0

$LBB1__Z8unpckrPhii:
ld.param.s32 %r1, [__cudaparm__Z8unpckrPhii_N];
mov.u32 %r2, 0;
setp.le.s32 %p1, %r1, %r2;
@%p1 bra $Lt_0_1282;
ld.param.s32 %r1, [__cudaparm__Z8unpckrPhii_N];
mov.s32 %r3, %r1;
ld.param.u32 %r4, [__cudaparm__Z8unpckrPhii_a];
mov.s32 %r5, %r4;
add.u32 %r6, %r1, %r4;
ld.param.s32 %r7, [__cudaparm__Z8unpckrPhii_key];
mov.s32 %r8, %r3;

$Lt_0_1794:
//<loop> Loop body line 31, nesting depth: 1,
//estimated iterations: unknown
.loc 28 35 0
ld.global.u8 %r9, [%r5+0];
.loc 28 31 0
ld.param.s32 %r7, [__cudaparm__Z8unpckrPhii_key];
.loc 28 35 0
xor.b32 %r10, %r7, %r9;
st.global.u8 [%r5+0], %r10;
add.u32 %r5, %r5, 1;
setp.ne.s32 %p2, %r5, %r6;
@%p2 bra $Lt_0_1794;

$Lt_0_1282:
.loc 28 37 0
exit;

$LDWend__Z8unpckrPhii:
} // _Z8unpckrPhii

Figure 2. The intermediate PTX code of a
simple XOR-based unpacking function for
NVIDIA graphics cards.

work today. An attacker can easily include multiple ver-
sions of the GPU-specific code in the same executable to
keep the malware functional across different GPU architec-
tures. In fact, supporting just the two major vendors would
allow for almost complete coverage. The wide adoption
of OpenCL [10], a cross-platform GPGPU framework that
aims to unify vendor-specific APIs into a single one, will
obviate the need for embedding different versions of the
same code.

3.1 Self-unpacking Malware

Code packing is one of the most common approaches
malware writers employ to protect their code and evade de-
tection [7]. Using this technique, the code of the malware
is converted to data using compression, encryption or any
other data transformation techniques. At runtime, an em-
bedded decryption routine firstunpacksthe concealed code
and then transfers control to the actual malicious code that
has been revealed on the host’s memory. Using variations
in the transformation method and the code of the decryption

routine, attackers are able to easily produce new variants of
the same malware that can effectively evade existing detec-
tors [15].

Implementing the self-unpacking functionality of a mal-
ware binary using GPU code can pose significant obsta-
cles to current malware detection and analysis systems. A
malware author can take advantage of the computational
power of modern graphics processors and pack the malware
with extremely complex encryption schemes that though
can be efficiently computed due to the massively paral-
lel architecture of GPUs. By relying heavily on GPU-
friendly transformations—quite costly when implemented
with CPU code—the same unpacking algorithm would take
a prohibitively long time to complete when running solely
on a CPU. This can severely affect existing malware scan-
ners, which typically employ specific unpacking routines
for different known packers to recover the original malware
binary [11].

Furthermore, many systems for the automated extraction
of packed executables inherently cannot handle GPU-based
self-unpacking malware. For instance, PolyUnpack [15]
relies on single-step execution and dynamic disassembly
during the unpacking process, However, in contrast to x86
code, static and dynamic analysis of GPU machine code is
at a nascent stage, and it is currently not supported by exist-
ing malware analysis systems.

Other unpacking systems like Renovo [9] monitor the
execution of malware samples using a virtual machine. Un-
fortunately, existing virtual machine monitors provide only
simulated graphics devices which currently do not support
any GPGPU functionality. Thus, any malware sample that
employs a GPU-based unpacking routinewill not run at all
on a VM—a severe consequence for a multitude of existing
dynamic malware analysis systems built on top of VMs and
system emulators [12, 16]. Although automated unpacking
is still possible by systems that monitor for execute-after-
write memory operations using only OS modifications [11],
in practice, even these systems are usually deployed in com-
bination with a virtual machine, for expediting system re-
store to a clean state and safeguarding malware execution.

For our proof-of-concept implementation of GPU-based
unpacking we chose a simple XOR-based encryption
scheme using a random key. The embedded unpacking
function is compiled to device code of the underlying GPU
instruction set. The intermediate code of the unpacking rou-
tine for CUDA, called PTX, is shown in Figure 2. Both the
GPU unpacking function and the malware code are embed-
ded into the same executable.

At start-up, the GPU code, usually referred to as theker-
nel, is loaded on the device and the CPU code starts execut-
ing, as shown in Figure 3. During the bootstrapping phase,
the malware allocates a memory-mapped buffer that is used
to store the packed binary data. As of CUDA v2.2 and later,



Figure 3. Schematic representation of the execution of GPU-based self-unpacking malware.

it is possible to allocate and map an area of host memory
that will be accessible from the device. Therefore, a kernel
running on the GPU can access host memory directly, al-
lowing the CPU and the GPU to share the same data. The
flow of control is then transferred to the GPU, where the de-
cryption routine unpacks the binary by modifying directly
the mapped buffer. Upon decryption, control is transferred
back to the CPU which executes the unpacked code.

The only CPU code that is exposed in the original mal-
ware image consists of the few instructions that copy the
packed data to the newly allocated buffer and bootstrap the
execution of the unpacking routine on the GPU. This min-
imal x86 code footprint does not leave much to existing
static and dynamic malicious code analysis systems to ac-
tually analyze.

3.2 Run-time Polymorphism

No matter how complex the encryption scheme in a
packed malware is, upon the end of the unpacking process
the code of the original malware will be restored on the
host’s memory. At that point, a malware analyst can take
a snapshot of the process’ address space and analyze the
exposed malicious code. Similarly, runtime malware scan-
ners that inspect the address space of all running processes
will be able to detect the original malicious code.

A well known technique to hinder the extraction of a
complete process image is to decrypt only the parts of code
needed at any given point in a just-in-time fashion [4].
Before decrypting a new part of code, any previously de-
crypted code that is no longer needed is re-encrypted. The
finer the granularity of the on-demand decrypted parts, the
smaller the code area that remains exposed on the host’s
memory.

For our proof-of-concept implementation of on-demand

decryption based on GPU code we chosefunctionsas the
unit of decryption. The machine code corresponding to each
function in the original source code is encrypted separately
using a different key. At run-time, the code of each func-
tion is decrypted on demand before its executed, and is re-
encrypted just before returning to the caller.

Figure 4 shows how the GPU can be utilized for on-
demand code decryption. All code for decrypting and re-
encrypting each function resides entirely on the GPU, and
thus the CPU is responsible for transferring control to the
dispatching code running on the GPU right before and af-
ter function execution. Thus, during execution, the flow of
control is constantly switching between the CPU and the
GPU.

The encrypted code of each function is stored in mem-
ory segments that are accessible from both the CPU and the
GPU. In contrast, the decryption keys are stored in private
device memory that isnotaccessible from the CPU. This ef-
fectively hinders existing analysis methods that extract the
keys and decrypt all encrypted code blocks using runtime
instrumentation [5]. Moving a step further, after execution
each function is re-encrypted using a different randomly
generated key, causing the malware to constantly mutate in
unpredictable ways in the host’s memory.

Although complete extraction of the original code is
still possible by a determined malware analyst, when com-
bined with existing anti-debugging techniques [5, 6], this
form of GPU-assisted runtime polymorphism makes the
whole reverse engineering process a challenging and time-
consuming task. For instance, the GPU is a perfect fit for
the implementation of runtime code checksumming, a quite
effective anti-debugging technique [3]. In contrast to exist-
ing CPU-only implementations that use periodic checks, the
GPU can constantly compute checksums of different code
parts in a truly parallel fashion.



Figure 4. Schematic representation of the execution of GPU-assisted malware that employs runtime
polymorphism.

4 Future Attacks

In the previous section we showed how malware can
split its execution flow between the CPU and the GPU and
thus evade traditional anti-malware systems. While already
powerful, the techniques described here utilize only a frac-
tion of the functionality provided by modern GPUs. We
expect that malware writers will soon start taking extensive
advantage of both graphical and computational capabilities
of graphics processors.

GPUs offer massive parellelism, which can be used to
speed up CPU-intensive operations. For example, a botnet
can be set up for large-scale password cracking—a task that
GPGPUs excel in [1, 8]. Bots can easily be extended with
GPGPU support and then use the GPUs of infected hosts to
offload password cracking.

This would not only result in a significant increase in
overall password cracking performance, but would also hide
the ongoing malicious activity. Since the GPU workload
cannot be monitored in real time to identify what code is
running, it is quite difficult to determine the presence of
the password cracking code on the GPU. Additionally, the
CPU will not be occupied at all during this computationally-
intensive process, and thus CPU-load monitors will not be
helpful in detecting the malicious activity.

Now, recall that theframebuffer, which is part of the de-
vice memory of the VPU, contains what is displayed on the
monitor at any given time. Having unrestricted access to
the framebuffer opens the way for a wide range of possible
attacks. For instance, malicious code running on the GPU
could access the screen buffer periodically and harvest pri-
vate data displayed on the user screen, and do so in a more
stealthy way than existing screen capture methods. Alter-

natively, more sophisticated malware could attempt to trick
users by displaying false, benign-looking information when
visiting rogue web sites (e.g., overwriting suspicious URLs
with benign-looking ones in the browser’s address bar).

We are currently exploring the feasibility of such at-
tacks using existing GPUs. Unfortunately, in the current
GPGPU architectures the framebuffer memory is protected
from read and write operations. However, as vendors con-
stantly try to improve the graphics interoperability between
GPGPU SDKs and graphics APIs such as OpenGL and Di-
rectX, it is quite possible that in future releases a kernel will
have full access to the screen framebuffer. Accessing the
screen pixels directly will increase the performance of many
graphics operations, such as 3D transformations and video
compression and decompression, by reducing data transfers
between the CPU and the GPU. So this is a feature that will
inevitably be part of future hardware releases.

Going one step further, future GPGPU architectures
could enable the implementation of GPU-hosted malware,
i.e., malware that runs solely on the GPU, without any asso-
ciation with a process running on the CPU. However, a ma-
jor restriction of current graphics hardware architectures is
that they do not support multitasking; only one task can uti-
lize the GPU at any time. Hence, if the malware is launched
directly on the GPU, without the intervention of the CPU,
it may parasitically consume all GPU cycles without being
context-switched. Consequently, the task responsible for
rendering the monitor would not run, and the display would
freeze. Although this scenario seems quite unrealistic right
now, as many technical hurdles need to be overcome, it is
possible that future graphics hardware will have the neces-
sary functionality for next-generation malicious code that
fully utilizes the GPU.



5 Conclusion

The rapid evolution of general-purpose computing on
graphics processors enables malware authors to take ad-
vantage of the GPU present in modern personal com-
puters and increase the robustness of their code against
existing defenses. The code armoring techniques pre-
sented in this paper—GPU-based unpacking and runtime
polymorphism—not only demonstrate the feasibility of
GPU-assisted malware, but also show the great potential
that general-purpose computing on GPUs has in enhancing
the evasiveness and functionality of malicious code. Both
techniques have been implemented and tested using existing
graphics hardware, and pose significant challenges to exist-
ing malware analysis and detection systems, which mostly
handle only IA-32 code.

Taking a step further, we describe potential attacks that
malware can employ using upcoming features of next-
generation GPUs. The constantly enhanced capabilities of
graphics processors, for both graphics and general-purpose
computations, can make graphics cards a promising envi-
ronment for future malware.
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