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Abstract Malware writers constantly seek new methods to
increase the infection lifetime of their malicious software.
To that end, techniques such as code unpacking and poly-
morphism have become the norm for hindering automated
or manual malware analysis and evading virus scanners. In
this paper, we demonstrate how malware can take advan-
tage of the ubiquitous and powerful graphics processing unit
(GPU) to increase its robustness against analysis and detec-
tion. We present the design and implementation of brute-
force unpacking and runtime polymorphism, two code ar-
moring techniques based on the general purpose computing
capabilities of modern graphics processors. By running part
of the malicious code on a different processor architecture
with ample computational power, these techniques pose sig-
nificant challenges to existing malware detection and analy-
sis systems, which are tailored to the analysis of CPU code.
We also discuss how upcoming GPU features can be used
to build even more robust and evasive malware, as well as
directions for potential defenses against GPU-assisted mal-
ware.
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1 Introduction

Computer viruses, bot clients, rootkits, and other types of
malicious software, collectively referred to as malware, abuse
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infected hosts to carry out their malicious activities. From
the first viruses written directly in assembly language, to
application-specific malicious code written in high-level lan-
guages such as JavaScript, any action of the malware results
in the execution of machine code on the compromised sys-
tem’s processor.

Besides the central processing unit, personal computers
are equipped with another powerful computational device:
the graphics processing unit (GPU). Historically, the GPU
has been used for handling 2D and 3D graphics rendering,
effectively offloading these computationally-intensive oper-
ations from the CPU. Driven to a large extent by the ever-
growing video game industry, graphics processors have been
constantly evolving, increasing both in computational power
and in the range of supported operations and functionality.

The most recent development in this evolving area is
general-purpose computing on GPUs (GPGPU), which al-
lows programmers to exploit the massive number of transis-
tors in modern GPUs for performing computations that are
traditionally handled by the CPU. In fact, leading vendors
like AMD and NVIDIA have released software development
frameworks that allow programmers to use a C-like pro-
gramming language to write general-purpose code for ex-
ecution on the GPU [8,28]. GPGPU has been used in a wide
range of applications, while the increasing programmability
and functionality of the latest GPU generations allows the
code running on the GPU to fully cooperate with the host’s
CPU and memory.

Given the great potential of general-purpose computing
on graphics processors, it is only natural to expect that mal-
ware authors will attempt to tap the powerful features of
modern GPUs to their benefit [23, 24, 30]. Two key factors
that affect the lifetime and potency of sophisticated malware
are its ability to evade existing anti-malware defenses, and
the effort required by a malware analyst to analyze and un-
cover its functionality—often a prerequisite for implement-
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ing the corresponding detection and containment mechanisms.
To that end, packing and polymorphism are among the most
widely used techniques for evading malware scanners [36].
Code obfuscation and anti-debugging tricks are commonly
used to hinder reverse engineering and analysis of (mali-
cious) code [14].

So far, these evasion and anti-debugging techniques take
advantage of the intricacies of the most common code ex-
ecution environments. Consequently, malware defense and
analysis mechanisms, as well as the expertise of security re-
searchers, focus on the most prevalent instruction set archi-
tectures (ISA), such as x86 and ARM. The ability to execute
general purpose code on the GPU opens a whole new win-
dow of opportunity for malware authors to significantly raise
the bar against existing defenses. The reason for this is that
existing malicious code analysis systems primarily support
x86 code, and the majority of security researchers are not fa-
miliar with the execution environment and ISA of graphics
processors.

Our previous research [37] has demonstrated the feasi-
bility of implementing malware that uses the GPU to armor
its code. Specifically, we presented the design and imple-
mentation of GPU-based unpacking and runtime polymor-
phism, two techniques that pose significant challenges to ex-
isting malware detection and analysis systems.

In this paper, we extend our previous work [37] by show-
ing how malware can tap the computational power of mod-
ern graphics processors to armor itself using brute-force un-
packing, which can be performed more than an order of
magnitude faster compared to a CPU implementation. We
also discuss potential attacks and future threats that can be
facilitated by next-generation GPGPU architectures, and dis-
cuss potential defense mechanisms, including both malware
analysis and run-time detection techniques.

We believe that a better understanding of the offensive
capabilities of attackers, as presented in this work, can lead
researchers to create more effective and resilient defenses.

2 GPGPU Programming

General-purpose computing on graphics processing units has
drastically evolved in recent years. As graphics processors
started becoming more powerful, programmers began ex-
ploring ways for enabling their applications to take advan-
tage of the massively parallel architecture of modern GPUs.

Standard graphics APIs, such as OpenGL and DirectX,
do not expose much of the underlying computational capa-
bilities that graphics hardware can provide. The task of us-
ing these APIs for general-purpose computation poses chal-
lenges when non-graphics applications are attempted to be
ported to the GPU. Data and variables have to be mapped
to graphics objects, while algorithms must be expressed as

pixel or vertex shaders, pretending to perform graphics trans-
formations. The lack of convenient data types, basic compu-
tational functionality, and a generic memory access model
renders this environment far from attractive for developers
accustomed to working in traditional programming environ-
ments.

The Compute Unified Device Architecture (CUDA) in-
troduced by NVIDIA [28] is a significant advance, expos-
ing several hardware features that are not available via the
graphics API.1 CUDA consists of a minimal set of exten-
sions to the C language and a runtime library that provides
functions to control the GPU from the host, as well as device-
specific functions and data types.

At the top level, an application written for CUDA con-
sists of a serial program running on the CPU, and a parallel
part, called a kernel, that runs on the GPU. A kernel, how-
ever, can only be invoked by a parent process running on
the CPU. As a consequence, a kernel cannot be initiated as a
stand-alone application, and it strongly depends on the pro-
cess that invokes it.

Each kernel is executed on the device as many differ-
ent threads organized in thread blocks. The thread blocks
are executed by the multiprocessors of the GPU in paral-
lel. Each multiprocessor consists of eight stream processors,
operating on a SIMT (Single Instruction, Multiple Thread)
fashion. In order to maximize the use of the multiproces-
sors’ computational resources, a thread scheduler periodi-
cally switches from one thread block to another.

In addition to program execution, CUDA also provides
functions for data exchange between the host and the device.
All I/O transactions are performed over the PCI Express bus.
Furthermore, memory operations can be performed through
DMA in order to facilitate concurrent execution between the
CPU and the GPU. A block of page-locked host memory can
also be mapped into the address space of the GPU, enabling
the program running on the CPU and the kernel executing
on the GPU to directly access the same data.

From the perspective of the malware author, a GPU-
assisted malware binary contains code destined to run on
different processors, as shown in Figure 1. Upon execution,
the malware loads the device-specific code on the GPU, al-
locates a memory area accessible by both the CPU and the
GPU and initializes it with any shared data, and schedules
the execution of the GPU code. Depending on the design,
the flow of control can either switch back and forth between
the CPU and the GPU, or separate tasks can run in parallel
on both processors.

A major advantage for the malware author is that the
malware can be statically linked with the CUDA library into
a single stand-alone executable. Thus, the malware becomes
completely self-contained, without the need to install any
files on the infected system. Furthermore, the execution of

1 AMD offers a similar SDK for its ATI line of GPUs [8].



GPU-Assisted Malware 3

Fig. 1 A GPU-assisted malware binary.

GPU code, as well as data transfers between the host and the
device do not require any administrator privileges. In other
words, the malware will run successfully even under user
privileges, making it more robust and deployable.

3 GPU-based Code Armoring

Malware can exploit the rich functionality of modern GPUs
in a plethora of ways. In this section, we describe the de-
sign and implementation of code-armoring techniques based
on GPU code. These prototype implementations not only
demonstrate the feasibility of GPU-assisted malware, but
also already pose significant challenges to existing malware
analysis and detection systems.

We have chosen to implement our prototypes using the
CUDA framework [28] by NVIDIA, probably the most widely
used GPGPU framework. An attacker could easily include
multiple versions of the GPU-specific code in the same exe-
cutable to keep the malware functional across different GPU
architectures. In fact, supporting just the two major vendors
allows for covering a significant fraction of the PC market,
as discussed in Section 4. The wide adoption of OpenCL [20],
a cross-platform GPGPU framework that aims to unify ven-
dor-specific APIs into a single one, will in the future obviate
the need for embedding different versions of the same code
for different architectures.

3.1 Basic Self-Unpacking

Code packing is one of the most common approaches
malware writers employ to protect their code for evading
detection [16]. Using this technique, the code of the mal-
ware is converted to data using compression, encryption, or
any other data transformation technique. At runtime, an em-
bedded decryption routine first unpacks the concealed code
and then transfers control to the actual malicious code that
has been revealed on the host’s memory. Using variations in

1 .entry _Z8unpckrPhii (
2 .param .u32 __cudaparm__Z8unpckrPhii_a,
3 .param .s32 __cudaparm__Z8unpckrPhii_N,
4 .param .s32 __cudaparm__Z8unpckrPhii_key)
5 {
6 .reg .u32 %r<12>;
7 .reg .pred %p<4>;
8 .loc 28 31 0
9 $LBB1__Z8unpckrPhii:

10 ld.param.s32 %r1, [__cudaparm__Z8unpckrPhii_N];
11 mov.u32 %r2, 0;
12 setp.le.s32 %p1, %r1, %r2;
13 @%p1 bra $Lt_0_1282;
14 ld.param.s32 %r1, [__cudaparm__Z8unpckrPhii_N];
15 mov.s32 %r3, %r1;
16 ld.param.u32 %r4, [__cudaparm__Z8unpckrPhii_a];
17 mov.s32 %r5, %r4;
18 add.u32 %r6, %r1, %r4;
19 ld.param.s32 %r7, [__cudaparm__Z8unpckrPhii_key];
20 mov.s32 %r8, %r3;
21 $Lt_0_1794:
22 //<loop> Loop body line 31, nesting depth: 1,
23 //estimated iterations: unknown
24 .loc 28 35 0
25 ld.global.u8 %r9, [%r5+0];
26 .loc 28 31 0
27 ld.param.s32 %r7, [__cudaparm__Z8unpckrPhii_key];
28 .loc 28 35 0
29 xor.b32 %r10, %r7, %r9;
30 st.global.u8 [%r5+0], %r10;
31 add.u32 %r5, %r5, 1;
32 setp.ne.s32 %p2, %r5, %r6;
33 @%p2 bra $Lt_0_1794;
34 $Lt_0_1282:
35 .loc 28 37 0
36 exit;
37 $LDWend__Z8unpckrPhii:
38 } // _Z8unpckrPhii

Fig. 2 The intermediate PTX code of a simple XOR-based unpacking
function for NVIDIA graphics cards. The main decryption loop iterates
through the packed data (lines 24–33) one byte at a time. Each byte is
XOR’ed with the specified key (lines 27–29).

the transformation method and the code of the decryption
routine, as well as multiple layers of encryption, attackers
are able to easily produce new variants of the same malware
that can effectively evade existing detectors [31].

Implementing the self-unpacking functionality of a mal-
ware binary using GPU code can pose significant obstacles
to current malware detection and analysis systems. Many
systems for the automated extraction of packed executables
inherently cannot handle GPU-based self-unpacking mal-
ware. For instance, PolyUnpack [31] relies on single-step
execution and dynamic disassembly during the unpacking
process. However, in contrast to x86 code, static and dy-
namic analysis of GPU machine code is at a nascent stage,
and it is currently not supported by existing malware analy-
sis systems.

Other unpacking systems like Renovo [19] monitor the
execution of malware samples using a virtual machine. Un-
fortunately, existing virtual machine monitors provide only
simulated graphics devices which currently do not support
any GPGPU functionality. Thus, any malware sample that
employs a GPU-based unpacking routine will not run at all
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Fig. 3 Schematic representation of the execution of GPU-based self-unpacking malware. (1) During initialization, the malware loads the GPU
code on the device, allocates a memory-mapped buffer accessible from both the CPU and the GPU, with the encrypted data, and transfers control
to the GPU. (2) The decryption routine running on the GPU unpacks the encrypted code in the mapped buffer. (3) The unpacked code is executed
on the CPU.

on a VM—a severe consequence for a multitude of existing
dynamic malware analysis systems built on top of VMs and
system emulators [9,22,27,33,38]. Although automated un-
packing is still possible by systems that monitor for execute-
after-write memory operations using only OS modificati-
ons [25], in practice, even these systems are usually de-
ployed in combination with a virtual machine, for expedit-
ing system restore to a clean state and safeguarding malware
execution.

For our basic proof-of-concept implementation of GPU-
based unpacking we chose a simple XOR-based encryption
scheme using a random key. The embedded unpacking func-
tion is compiled to device code of the underlying GPU in-
struction set. The intermediate code of the unpacking routine
for CUDA, called PTX, is shown in Figure 2. Both the GPU
unpacking function and the malware code are embedded into
the same executable.

At start-up, the GPU code, usually referred to as the ker-
nel, is loaded on the device and the CPU code starts execut-
ing, as shown in Figure 3. During the bootstrapping phase,
the malware allocates a memory-mapped buffer that is used
to store the packed binary data. As of CUDA v2.2 and later,
it is possible to allocate and map an area of host memory
that will be accessible from the device. Therefore, a kernel
running on the GPU can access host memory directly, al-
lowing the CPU and the GPU to share the same data. The
flow of control is then transferred to the GPU, where the de-
cryption routine unpacks the binary by modifying directly
the mapped buffer. Upon decryption, control is transferred
back to the CPU which executes the unpacked code.

The only CPU code that is exposed in the original mal-
ware image consists of the few instructions that copy the
packed data to the newly allocated buffer and bootstrap the
execution of the unpacking routine on the GPU. This mini-

mal x86 code footprint does not leave much to existing static
and dynamic malicious code analysis systems to actually an-
alyze.

3.2 Brute-force Unpacking

Although even a simple GPU-based encoding scheme for
malware packing can introduce significant hurdles for mal-
ware analysis, such an implementation exploits only the dif-
ferent nature of the graphics processor architecture, which
is currently not supported by most analysis systems. How-
ever, a malware author can also take advantage of the com-
putational power of modern graphics processors and pack
the malware with extremely complex encryption schemes,
which though can be efficiently computed due to the mas-
sively parallel architecture of GPUs. By relying heavily on
GPU-friendly transformations—which are quite costly when
implemented solely with CPU code—the same unpacking
algorithm would take a prohibitively long time to complete
when running solely on a CPU. This can severely affect ex-
isting malware scanners, which typically employ specific
unpacking routines for different known packers to recover
the original malware binary [25].

In our basic unpacking implementation, the decryption
key is stored within the malware binary, and is used to un-
pack the encrypted malicious code. Regardless of the length
and the complexity of the key being used, it is essential that
the key is accessible by the malware in order to decode itself.
Given the great potential of parallel processing in modern
graphics cards, an alternative approach would be the follow-
ing. The malware can simply be encrypted with a randomly
generated key, which however is not included in the mal-
ware binary. At run-time, although the encryption key is not
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Device MD5 SHA1
CPU 28M trials/sec 20M trials/sec
GPU 609M trials/sec 404M trials/sec

Table 1 Brute-force unpacking rate for CPU and GPU implementa-
tions. Note that the CPU implementation runs in parallel on four CPU
cores.

available, the malware can unpack its code using a brute-
force scheme to guess the encryption key.

This approach is based on the fact that modern graph-
ics processors have been shown to achieve great speedup on
password guessing [3, 6]. In contrast to typical packed mal-
ware, which contains a decryption routine with an embed-
ded decryption key, a malware that employs a brute-force
unpacking scheme uses a brute-force key guessing engine to
unpack the encrypted code.

To verify the correctness of the key, the malware could
simply start executing the revealed instructions. However,
this would result in the execution of incorrect code whenever
the decryption was performed with a wrong key. In this case,
the malware process would terminate, throwing an illegal
instruction exception. A simpler scheme is to store a hashed
version of the key along with the encrypted code. The brute-
force engine can then try different key combinations, until
its hash value matches the stored hashed key.

The strength of this approach is that the decryption key
is not stored (in clear-text) in the malware itself, and thus
cannot be extracted during malware analysis. At the same
time, each instance of the same malware can easily be en-
crypted with a different randomly generated key. An im-
portant implication for conventional CPU-based automatic
analysis systems is that they would need a much longer time
to unpack the malware and reveal its functionality. For in-
stance, custom packer-specific unpacking routines used in
virus scanners, which currently run only on the CPU, will
need a considerably larger amount of CPU time to decrypt
a malware sample armored with a GPU-based brute-force
unpacker. The difference in decryption speed may signifi-
cantly delay the detection of the malware, and increase its
propagation rate.

We implemented different versions of a brute-force un-
packer using the MD5 and SHA1 hash functions. Both al-
gorithms have been shown to achieve great performance in
graphics processors [13, 21], while at the same time both
have many optimized CPU implementations to compare with.
After benchmarking of various implementations, we found
the open source password cracker John The Ripper [4] to
achieve the best performance among many others. John The
Ripper uses highly optimized implementations of both algo-
rithms that take advantage of specialized SSE instructions
found in modern CPUs.

Year

2005 2006 2007 2008 2009 2010 2011 2012

M
ill

io
n 

tr
ie

s 
pe

r 
se

co
nd

0

100

200

300

400

500

600

700

8600GT

8800GT

GTX295

GTX480

Pentium4 E6750 XeonE5520

Fig. 4 Evolution of the brute force unpacking rate for various CPU and
GPU models.

For our experiments, we used a system equipped with
a quad-core Intel Xeon E5520 2.26 GHz with 8 MB cache.
The graphics card was a NVIDIA GTX480, with 1.40 GHz
clock rate and 1.5 GB of memory. Table 1 shows the key
guessing rate achieved for both the CPU and GPU imple-
mentations. We can observe that the SHA1 GPU-based im-
plementation is about 20 times faster than the corresponding
CPU implementation, while MD5 is about 22 times faster.
We should note that the CPU implementation takes advan-
tage of all four cores of the system, as well as the optimized
SSE instructions, to further parallelize the hashing opera-
tions.

A CPU-based unpacking routine for a malware that em-
ploys GPU-based brute force unpacking would require a con-
siderably longer time to uncover the concealed malicious
code. For example, using a key of length equal to six, the
time required for decryption is about 20 minutes for the
GPU, while the corresponding time for the CPU is more than
seven hours.

To evaluate the difference in performance between the
CPU and the GPU over time, we repeated the same experi-
ment using CPU and GPU models of previous generations.
Figure 4 shows how the performance gap between CPU and
GPU models has been steadily growing over time. We ob-
serve that in less than two years, the computational through-
put of GPUs has increased about 10 times, from 61.1M tri-
als/sec to over 609M trials/sec. In contrast, the correspond-
ing rate for CPUs has increased from 3M trials/sec at early
2007, to about 20M trials/sec in late 2010. We speculate that
this trend will continue, and future GPU models will proba-
bly achieve even higher speedup.

3.3 Run-time Polymorphism

No matter how complex the encryption scheme in a packed
malware is, upon the end of the unpacking process the code
of the original malware will be restored on the host’s mem-
ory. At that point, a malware analyst can take a snapshot
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Fig. 5 Schematic representation of the execution of GPU-assisted malware that employs runtime polymorphism. (1) The CPU code of the malware
carries out the main logic of the program by calling the appropriate function. (2) For each function to be executed, the dispatcher looks up its
encrypted body and the corresponding decryption key and triggers its execution. (3) The decryption routine unpacks the encrypted code of the
function into the mapped buffer. (4) The fuction is executed on the CPU. (5) The code of the function is re-encrypted using a different randomly
generated key.

of the process’ address space and analyze the exposed mali-
cious code. Similarly, runtime malware scanners that inspect
the address space of all running processes will be able to de-
tect the original malicious code.

A well known technique to hinder the extraction of a
complete process image is to decrypt only the parts of code
needed at any given point in a just-in-time fashion [11]. Be-
fore decrypting a new part of code, any previously decrypted
code that is no longer needed is re-encrypted. The finer the
granularity of the on-demand decrypted parts, the smaller
the code area that remains exposed on the host’s memory.

For our proof-of-concept implementation of on-demand
decryption based on GPU code, we chose functions as the
unit of decryption. The machine code corresponding to each
function in the original source code is encrypted separately
using a different key. At run-time, the code of each func-
tion is decrypted on demand before its executed, and is re-
encrypted just before returning to the caller.

Figure 5 shows how the GPU can be used for on-demand
code decryption. All code for decrypting and re-encrypting
each function resides entirely on the GPU, and thus the CPU
is responsible for transferring control to the dispatching code
running on the GPU right before and after function exe-
cution. Thus, during execution, the flow of control is con-
stantly switching between the CPU and the GPU.

The encrypted code of each function is stored in mem-
ory segments that are accessible from both the CPU and the
GPU. In contrast, the decryption keys are stored in private
device memory that is not accessible from the CPU. This
effectively precludes existing analysis methods that extract
the keys and decrypt all encrypted code blocks using run-
time instrumentation [12]. Moving a step further, after ex-
ecution, each function is re-encrypted using a different ran-

domly generated key, causing the malware to constantly mu-
tate in unpredictable ways in the host’s memory.

Although complete extraction of the original code is still
possible by a determined malware analyst, when combined
with existing anti-debugging techniques [12, 14], this form
of GPU-assisted runtime polymorphism makes the whole re-
verse engineering process a challenging and time-consuming
task. For instance, the GPU is a perfect fit for the implemen-
tation of runtime code checksumming, a quite effective anti-
debugging technique [10]. In contrast to existing CPU-only
implementations that use periodic checks, the GPU can con-
stantly compute checksums of different code parts in a truly
parallel fashion.

4 Infection Coverage

In this section, we explore the impact that GPU-assisted
malware can have given the current technology landscape,
by estimating the prevalence of graphics processors that sup-
port GPGPU. This is a crucial aspect for the feasibility of
GPU-assisted malware, as it can be operational only on hosts
equipped with graphics hardware that supports GPGPU.

Currently, the major vendors in the graphics processors
industry are NVIDIA, AMD, and Intel, which collectively
represent about 99% of the worldwide graphics cards market
share [2]. Our proof-of-concept implementations of GPU-
assisted malware, described in the previous sections, require
a graphics card that supports CUDA or OpenCL. CUDA
is specific to NVIDIA graphics processors, while OpenCL
has been adopted by both AMD and NVIDIA. Intel also
adopted OpenCL as of June 2012 for its 3rd Generation In-
tel Core Processors with Intel HD Graphics 4000/2500—
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Fig. 6 Distribution of graphics processor models for the top-20 best-
selling (a) laptop and (b) desktop personal computers (data source:
Amazon [1]).

previous models can only be programmed using an exist-
ing graphics library, such as DirectX or OpenGL, even for
general-purpose computing applications. As such, all new
models manufactured by NVIDIA, AMD, and Intel can be
programmed with OpenCL, and thus can easily be used by
malware authors.

Figure 6 shows the percentage of graphics cards for the
top-20 personal computers sold by a major online store [1],
as of August 2014. We can see that 80% of the laptop and
72.2% of the desktop systems are equipped with a CUDA or
OpenCL enabled GPU. The remaining systems are equipped
with older generation Intel graphics processors, which do
not support GPGPU.

It could be possible to implement some of the techniques
described in section 3 using a graphics library, and extend
the compatibility of a GPU-assisted malware to older-gene-
ration graphics processors. However, we do not consider this
as an important obstacle for the impact of GPU-assisted mal-
ware, as it is reasonable to expect that all future models will
include GPGPU functionality.

5 Defending Against GPU-Assisted Malware

Existing malware analysis and detection systems target ma-
licious code only for CPU architectures, and are thus in-
effective against GPU-assisted malware. Fortunately, GPU-
assisted malware can be identified in several ways. To prop-
erly identify GPU-assisted malware though, existing defenses
need to be enhanced with new functionality tailored to GPU
code.

5.1 GPU Code Analysis

A first basic requirement is support for analyzing GPU ma-
chine code. NVIDIA has released cuda-gdb [28], a de-
bugger for CUDA applications. The goal of cuda-gdb is to
provide a mechanism of debugging in real time a CUDA ap-
plication running on the actual GPU, similarly to gdb(1).
Unfortunately, cuda-gdb cannot execute programs that do
not contain debug symbols (i.e., they have been compiled
without the -g flag set on). Thus, it is not very useful for
malware analysis, as an attacker can easily strip debug sym-
bols from the malicious code.

An important requirement for systems built on top of vir-
tual machine environments [9, 19, 22, 27, 33, 38] is the sup-
port of GPGPU APIs, in place of primitive graphics device
emulation. Virtual machines usually provide a virtualization
layer between the real graphics card of the host OS, and the
emulated graphics card presented to the guest OS, allowing
multiple VMs to access the same device. Therefore, when
running on existing virtual machines, GPGPU applications
fail to execute because the driver of the virtual graphics de-
vice does not support any of the GPGPU APIs.

Recently, NVIDIA released the SLI Multi-OS technol-
ogy [5], which allows a user to assign a dedicated Quadro
GPU to both the host operating system and a range of op-
tionally loaded guest operating systems. The new technol-
ogy creates a fully virtualized workstation, but requires a
specific combination of software and hardware in order to
get true access to the hardware. We believe though that this
is a first step towards broader support of GPGPU APIs in
virtualized environments.

In addition, gVirtuS [15] allows a virtual machine to run
GPGPU programs in a transparent way, but with a greater
overhead compared to a native GPGPU setup. Currently,
gVirtuS supports only NVIDIA GPUs, however by design
it is not limited to a particular GPU architecture and it is
hypervisor-independent. Although the implementation of gVir-
tuS is still at an early stage, it could already be integrated in
existing VM-based malware analysis systems.

5.2 GPU-Assisted Malware Detection

A possible mechanism for the detection of GPU-assisted
malware can be based on the observation of DMA side ef-
fects. Stewin et al. [35] have shown that DMA malware has
DMA side effects that can be reliably measured. However,
the proposed technique works for DMA malware that per-
forms bulk DMA transfers, e.g., continually searching the
host’s memory for valuable data to carry out an attack. How-
ever, since our GPU-assisted malware does not perform any
such bulk transfers, it is not clear if this technique could be
applied as an effective defense.
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Alternatively, a possible defense can be based on mon-
itoring the host memory of the GPU for code that is lo-
cated within. Given that the host memory that is accessible
from the GPU is allocated from a specific address range,
a protection mechanism can monitor for any code residing
or executing from that memory. However, an attacker can
remap the GPU host memory to another address region. In
current chipsets, the I/OMMU provides memory protection
from misbehaving devices by taking care of mapping device
addresses to physical addresses [7,18]. However, it has been
demonstrated that an I/OMMU configuration can be tricked
with legacy PCIe devices [32]. Moreover, an I/OMMU can
be attacked by modifying the number of DMA remapping
engines provided by the BIOS [39]. This is done before the
I/OMMU is configured by system software. Consequently,
for a comprehensive protection against GPU-assisted mal-
ware, it is absolutely necessary to correctly configure the
I/OMMU [34].

6 Discussion

In the previous sections we showed how malware can split
its execution flow between the CPU and the GPU and thus
evade existing anti-malware systems. While already power-
ful, the techniques described here utilize only a fraction of
the functionality provided by modern GPUs. We expect that
malware writers will soon start taking advantage of both the
graphical and computational capabilities of graphics proces-
sors to a greater extent.

GPUs offer massive computational parallelism, which
can be used to speed up various CPU-intensive operations
that malware may need to carry out. For example, a botnet
can be set up for large-scale password cracking—a task that
GPGPUs excel in [6, 17]. Bots can easily be extended with
GPGPU support and then use the GPUs of infected hosts to
offload password cracking.

This would not only result in a significant increase in
overall password cracking performance, but would also hide
the ongoing malicious activity. Since the GPU workload can-
not be monitored in real time to identify what code is run-
ning, it is quite difficult to determine the presence of the
password cracking code on the GPU. Additionally, the CPU
will not be occupied at all during this computationally-inten-
sive process, and thus CPU-load monitors will not be helpful
in detecting the malicious activity.

Now, note that the framebuffer, which is part of the de-
vice memory of the GPU, contains what is displayed on
the monitor at any given time. Having unrestricted access to
the framebuffer opens the way for a wide range of possible
attacks. For instance, malicious code running on the GPU
could access the screen buffer periodically and harvest pri-
vate data displayed on the user screen, and do so in a more

stealthy way than existing screen capture methods. As a mat-
ter of fact, it has been recently shown that a user program’s
data stored in GPU memory can be revealed both during its
execution and right after its termination [24, 26, 29]. Alter-
natively, more sophisticated malware could attempt to trick
users by displaying false, benign-looking information when
visiting rogue web sites (e.g., overwriting suspicious URLs
with benign-looking ones in the browser’s address bar).

We are currently exploring the feasibility of such attacks
using existing GPUs. The framebuffer memory in current
GPGPU architectures is protected from read and write op-
erations. However, as vendors constantly try to improve the
graphics interoperability between GPGPU SDKs and graph-
ics APIs such as OpenGL and DirectX, it is quite possible
that in future releases a kernel will have full access to the
screen framebuffer. Accessing the screen pixels directly will
increase the performance of many graphics operations, such
as 3D transformations and video compression and decom-
pression, by reducing data transfers between the CPU and
the GPU. So this is a feature that may be part of future hard-
ware releases.

Going one step further, future GPGPU architectures may
enable the implementation of GPU-hosted malware, i.e., ma-
licious software that runs solely on the GPU, without any
association with a process running on the CPU. However,
a major restriction of current graphics hardware architec-
tures is that they do not support multitasking; only one task
can utilize the GPU at any time. Hence, if the malware is
launched directly on the GPU, without the intervention of
the CPU, it may parasitically consume all GPU cycles with-
out being context-switched. Consequently, the task responsi-
ble for rendering the monitor would not run, and the display
would freeze. Although this scenario seems quite unrealistic
right now, as many technical hurdles need to be overcome, it
is possible that future graphics hardware will have the nec-
essary functionality for next-generation malicious code that
fully utilizes the GPU.

7 Conclusion

The rapid evolution of general-purpose computing on graph-
ics processors enables malware authors to take advantage
of the GPU present in modern personal computers, and in-
crease the robustness of their code against existing defenses.
The GPU-based code armoring techniques presented in this
paper—basic self-unpacking, brute force unpacking, and run-
time polymorphism—not only demonstrate the feasibility
of GPU-assisted malware, but also show the great potential
that general-purpose computing on GPUs has in enhancing
the evasiveness and functionality of malicious code. All the
techniques presented in this paper have been implemented
and tested using typical graphics hardware that is widely
available in recent systems, and pose significant challenges
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to existing malware analysis and detection systems, which
mostly handle only CPU code.

Taking a step further, we describe potential attacks that
malware can employ using upcoming features of next-gene-
ration GPUs. The constantly enhanced capabilities of graph-
ics processors, for both graphics and general-purpose com-
putations, can make graphics cards a promising environment
for future malware. Fortunately, existing defenses can be ex-
tended to support the analysis of GPU machine code, and
there already have been some initial steps towards this di-
rection.
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