
Parallelization and Characterization of Pattern Matching using GPUs

Giorgos Vasiliadis

FORTH-ICS, Greece

gvasil@ics.forth.gr

Michalis Polychronakis

Columbia University, USA

mikepo@cs.columbia.edu

Sotiris Ioannidis

FORTH-ICS, Greece

sotiris@ics.forth.gr

Abstract

Pattern matching is a highly computationally intensive

operation used in a plethora of applications. Unfortunately,

due to the ever increasing storage capacity and link speeds,

the amount of data that needs to be matched against a given

set of patterns is growing rapidly. In this paper, we explore

how the highly parallel computational capabilities of com-

modity graphics processing units (GPUs) can be exploited

for high-speed pattern matching. We present the design, im-

plementation, and evaluation of a pattern matching library

running on the GPU, which can be used transparently by

a wide range of applications to increase their overall per-

formance. The library supports both string searching and

regular expression matching on the NVIDIA CUDA archi-

tecture. We have also explored the performance impact of

different types of memory hierarchies, and present solutions

to alleviate memory congestion problems. The results of

our performance evaluation using off-the-self graphics pro-

cessors demonstrate that GPU-based pattern matching can

reach tens of gigabits per second on different workloads.

1 Introduction

With ever increasing storage capacity and link speeds,

the amount of data that needs to be searched, analyzed, cat-

egorized, and filtered is growing rapidly. For instance, net-

work monitoring applications, such as network intrusion de-

tection systems and spam filters, need to scan the contents

of a vast amount of network traffic against a large number

of threat signatures. Moreover, the scanning of unstructured

data, like full-text searching and virus scanning, usually re-

lies heavily on some form of regular expression matching.

As the amount of data to be analyzed and the number and

complexity of the patterns to be searched increase, content

searching is becoming more difficult to perform in real time.

An important class of algorithms used for searching and

filtering information relies on pattern matching. Pattern

matching is one of the core operations used by applica-

tions such as traffic classification [1], intrusion detection

systems [5], virus scanners [3], spam filters [6], and content

monitoring filters [2, 4]. Unfortunately, this core and pow-

erful operation has significant overheads in terms of both

memory space and CPU cycles, as every byte of the input

has to be processed and compared against a large set of pat-

terns. A possible solution to the increased overhead intro-

duced by pattern matching is the use of hardware platforms,

although with a high and often prohibitive cost for many

organizations. Specialized devices, such as ASICs and FP-

GAs, can be used to inspect an input data stream and offload

the CPU [10–12]. Both are very efficient and perform well,

however they are complex to program and modify, and they

are usually tied to a specific implementation.

The advent of commodity massively parallel architec-

tures, such as modern graphics processors, is a compelling

alternative option for inexpensively removing the burden

of computationally-intensive operations from the CPU. The

data-parallel execution model of modern graphics process-

ing units (GPUs) is a perfect fit for the implementation of

high-performance pattern matching algorithms [7,9,14,17–

21]. Moreover, the fast-growing video game industry exerts

strong economic pressure that forces constant innovation,

while keeping the cost at a low rate.

In this paper, we focus on the implementation of string

searching and regular expression matching on the GPU.

With sufficient performance, two orders of magnitude faster

than traditional CPU algorithms, a GPU-based pattern

matching engine enables content scanning at multi-gigabit

rates, and allows for real-time inspection of the large vol-

ume of data transferred in modern network links. Efficient

GPU algorithms are capable of scanning up to 30 times

faster than a single CPU core, including the cost of all

data transfers to and from the device, reaching a maximum

throughput of about 30 Gbit/s.

The contributions of this work include:

• The implementation of a GPU-based pattern match-

ing library for inspecting network packets in real-time,

with support for both string searching and regular ex-

pression matching operations.

• The performance evaluation of the pattern matching



engine using different memory hierarchies that mod-

ern graphics processors provide. We characterize the

performance of our implementation on different types

of memory, and identify the setup that performs best.

• An efficient packet buffering scheme for transferring

network packets to the memory space of the GPU for

inspection. Our scheme is quite efficient on different

packet lengths, alleviating the performance degrada-

tion that small packets incur in previous implementa-

tions. The overall packet processing throughput ranges

between 6.49 Gbit/s for very small packets, up to 29.7

Gbit/s for packets with full payload.

2 Background

2.1 Graphics Processors

Modern graphics processing units (GPUs) have evolved

to massively parallel computational devices, containing

hundreds of processing cores that can be used for general-

purpose computing beyond graphics rendering. The fun-

damental difference between CPUs and GPUs comes from

how transistors are assigned to different tasks in the proces-

sor. A GPU devotes most of its die area to a large array

of Arithmetic Logic Units (ALUs). In contrast, most CPU

resources serve a large cache hierarchy and a control plane

for sophisticated acceleration of a single thread.

The architecture of modern GPUs is based on a set of

multiprocessors, each of which contains a set of stream

processors operating on SIMD (Single Instruction Multi-

ple Data) programs. For this reason, a GPU is ideal for

parallel applications requiring high memory bandwidth to

access different sets of data. Both NVIDIA and AMD pro-

vide convenient programming libraries to use their GPUs as

a general purpose processor (GPGPU), capable of executing

a very high number of threads in parallel.

A unit of work issued by the host computer to the GPU

is called a kernel. A typical GPU kernel execution takes

the following four steps: (i) the DMA controller transfers

input data from host memory to GPU memory; (ii) a host

program instructs the GPU to launch the kernel; (iii) the

GPU executes threads in parallel; and (iv) the DMA con-

troller transfers the results data back to host memory from

device memory. A kernel is executed on the device as many

different threads organized in thread blocks, and each mul-

tiprocessor executes one or more thread blocks.

A fast shared memory is managed explicitly by the pro-

grammer among thread blocks. The global, constant, and

texture memory spaces can be read from or written to by

the host, are persistent across kernel launches by the same

application, and are optimized for different memory us-

ages [13].

In the new Fermi architecture, each multiprocessor has

32 stream processors, instead of eight in the previous gen-

eration. The GTX480 graphics card, that we used in this

work, contains 15 multiprocessors. In addition, each multi-

processor has 16–48 KB of L1 cache, while all multiproces-

sors share 768 KB of coherent L2 cache (both handled by

the GPU automatically). The shared memory is increased

from 16 to 48 KB, however shared memory and L1 cache

must add up to 64 KB in total, as they are implemented us-

ing the same physical memory.

2.2 Pattern Matching

String searching and regular expression matching are

two of the most common pattern matching operations. In

string searching, a set of fixed strings is searched in a body

of text. Regular expressions, on the other hand, offer signif-

icant advantages, providing flexibility and expressiveness in

specifying the context of each match. In addition to match-

ing strings of text, they offer wild-card characters, logical

operators, repeating patterns, range constraints, and recur-

sive forms. Thus, a single regular expression can cover a

large number of individual string representations.

Both string patterns and regular expressions can be

matched efficiently by compiling the patterns into a Deter-

ministic Finite Automaton (DFA). A sequence of n bytes

can be processed using O(n) operations irrespectively of

the number of patterns, which is very efficient in terms of

speed. This is achieved because at any state, every possible

input byte leads to at most one new state.

Aiming to take advantage of the extreme thread-level

parallelism of modern GPUs, we have parallelized the DFA-

based matching process by splitting the input data stream

into different chunks. Each chunk is scanned independently

by a different thread using the same automaton that is stored

in device memory. Although threads use the same automa-

ton, each thread maintains its own state, eliminating any

need for communication between them.

2.2.1 Regular Expressions and Finite Automata

A regular expression is a very convenient form of represent-

ing a set of strings. They are usually used to give a concise

description of a set of patterns, without having to list all of

them. For example, the expression (a | b) ∗ aa represents

the infinite set {“aa”, “aaa”, “baa”, “abaa”, ...}, which

is the set of all strings with characters a and b that end in

aa. Formally, a regular expression contains at least one of

the operations described in Table 1.

A deterministic finite automaton (DFA) represents a fi-

nite state machine that recognizes a regular expression. A

finite automaton is represented by the 5-tuple (Σ, Q, T , q0,

F ), where: Σ is the alphabet, Q is the set of states, T is



Table 1. Regular expression operations.
Name : Reg. Designation

Expr.

Epsilon ǫ {””}
Character α For some character α.

Concatenation RS Denoting the set {αβ|α in R and β in S}.

e.g., {”ab”}{”d”, ”ef”} = {”abd”, ”abef”}
Alternation R|S Denoting the set union of R and S.

e.g., {”ab”}|{”ab”,”d”,”ef”} = {”ab”,”d”,”ef”}.

Denoting the smallest super-set of R that

contains ǫ and is closed under string

Kleene star A∗ concatenation.

This is the set of all strings that can be

made by concatenating zero or more

strings in R.

e.g., {”ab”, ”c”}* =

{ǫ,”ab”,”c”,”abab”,”abc”,”cab”,”ababab”,...}

the transition function, q0 is the initial state, and F is the

set of final states. Given an input string I0I1...IN , a DFA

processes the input as follows: At step 0, the DFA is in state

s0 = q0. At each subsequent step i, the DFA transitions

into state si = T (si−1, Ii). To alleviate backtracking at the

matching phase, each transition is unique for every state and

character combination.

A DFA accepts a string if, starting from the initial state

and moving from state to state, it reaches a final state. The

transition function can be represented by a two-dimensional

table T , which defines the next state T [s, c] for a state s and

a character c. For example, the regular expression (abc+)+
is recognized by the DFA shown in Figure 1. The automaton

has four states, state 0 is the start state, and state 3 is the only

final state.

2.2.2 Converting a Regular Expression into a Deter-

ministic Finite Automaton

Many existing tools that use regular expressions, such as

grep(1), flex(1) and pcre(3), have support for con-

verting regular expressions into DFAs. The most common

approach is to first compile them into non-deterministic fi-

nite automata (NFAs), and then convert them into DFAs.

We follow the same approach, and first convert each regular

expression into a NFA using the Thompson algorithm [15].

The generated NFA is then converted to a DFA incremen-

tally, using the Subset Construction algorithm. The basic

idea of subset construction is to define a DFA in which each

state is a set of states of the corresponding NFA. The result-

ing DFA achieves O(1) computational cost for each con-

sumed character of the input during the matching phase.

Each DFA is represented as a two-dimensional state table

array that is mapped on the memory space of the GPU. The

dimensions of the array are equal to the number of states

and the size of the alphabet (256 in our case), respectively.

Each cell contains the next state to move to, as well as an

indication of whether the state is a final state or not. Since
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Figure 1. The DFA state machine (a) and the

state transition table (b) for the regular ex-
pression (abc+)+.

transition numbers may be positive integers only, we rep-

resent final states as negative numbers. Whenever the state

machine reaches into a state that is represented by a negative

number, it considers it as a final state and reports a match at

the current input offset.

3 Implementation

We have developed a library for executing both string

searching and regular expression matching operations on

the GPU. The library provides functions for inspecting net-

work packets, and returning any matches found back to the

application. The searching functions have support for pro-

cessing input data either from a saved trace file, or directly

from the network interface. This allows the library to be

transparently used by a broad range of applications to of-

fload their costly pattern matching operations to the GPU,

and thus increase their overall performance.

Initially, all patterns are compiled to DFA state tables.

The user is able to compile each pattern to a separate DFA,

or combine many different patterns to a single one. The

compilation process is performed offline by the CPU, usu-

ally during the initialization phase of the user application.

The state table is then copied and mapped to the mem-

ory space of the GPU. At the searching phase, each thread

searches a different portion (i.e., a separate network packet)

of the input data stream. In order to fully utilize the data-

parallel capabilities of the GPU, the library creates a large

number of threads that run simultaneously. The core pro-

cessing loop splits the input packets, and distributes them

for processing to different threads.



Table 2. Data transfer rate between host and
device (Gbit/s).

Buffer Size 1KB 4KB 64KB 256KB 1MB 16MB

Host to Device 2.04 7.1 34.4 42.1 44.6 45.7

Device to Host 2.03 6.7 21.1 23.8 24.6 24.9

3.1 Transferring Network Packets to the
GPU

The first thing to consider is the transfer of the packets

to the memory space of the GPU. A major bottleneck for

this operation, is the extra overhead, caused by the PCIe

bus that interconnects the graphics card with the base sys-

tem. The bandwidth of the PCIe bus has evolved over the

last versions—v2.0 is able to perform at 512 MB/s per x1

lane. This results to 8 GB/s overall throughput for a PCIe

x16 graphics card. Unfortunately, the PCIe bus suffers

many overheads, especially for small data transfers. Table 2

shows the transfer rate to move data to a single GPU de-

vice, and vice versa. We observe that with a large buffer,

the rate for transferring to the device is over 45 Gbit/s,1

while transferring from device to host decreases to about 25

Gbit/s. The asymmetry in the data transferring throughput

from the device, is probably related to our corresponding

hardware setup (i.e., the interconnection between the moth-

erboard and the graphics cards), and has been observed by

other researchers too [8]. We speculate that future mother-

boards will alleviate this asymmetry.

As a consequence, network packets are transferred to the

memory space of the GPU in batches. A separate packet

buffer is allocated to collect the incoming packets. When-

ever the buffer gets full, all packets are transferred to the

GPU in one operation. As we will see in Section 4.3, the

format of the packet buffer plays a significant role in the

overall packet processing throughput. First, it affects the

transferring overheads, as small data transfer units achieve

a reduced bandwidth due to PCIe and DMA overheads. Sec-

ond, the packet buffer scheme affects the parallelization ap-

proach, i.e., the distribution of the network packets to the

stream processors. The simplest the buffer format, the bet-

ter the parallelization scheme.

In this work, we have implemented two different ap-

proaches for collecting packets. The first uses fixed buck-

ets for storing the network packets, and has been previously

adapted in similar works [17,18]. The second approach uses

a more sophisticated, index-based, scheme. Instead of pre-

allocating a different, fixed-size, bucket for each packet, all

packets are stored back-to-back into a serial packet buffer.

1The deviation from the theoretical 64 Gbit/s throughput arises from

the 8b/10b encoding scheme at the physical level. The scheme ensures

that strings of consecutive binary digits are limited in length.

Bucket 0:

Bucket 1:

Bucket 2:

Bucket N:

Packet Buffer
15400

Pkt 0

Pkt 1

Pkt 2
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(a) Packets are stored to distinct buckets.

Index 0:

Index 1:

Index 2:

Index N:

Packet Buffer: Pkt 2Pkt 1Pkt 0 Pkt N

(b) Packets are stored sequentially and indexed by a separate direc-

tory.

Figure 2. Different packet buffer formats.

A separate index is maintained, that keeps pointers to the

corresponding offsets in the buffer, as shown in Figure 2(b).

Each thread reads the corresponding packet offset indepen-

dently, using its own thread number, without any lock or

synchronization mechanism needed. In order to avoid an

extra transaction over the PCIe bus, the index array is stored

in the beginning of the packet buffer. The packet buffer and

the indices are transferred to the GPU at once, adding a mi-

nor transfer cost, since the size of the index array is quite

small in regards to the size of the packet buffer.

3.2 Pattern Matching on the GPU

During scanning, the algorithm moves over the input

data stream one byte at a time, as shown in Figure 3. For

each consumed byte, the matching algorithm switches the

current state according to the state transition table. The

pattern matching is performed byte-wise, meaning that we

have an input width of eight bits and an alphabet size of

28 = 256. Thus, each state will contain 256 pointers to

other states. The size of the DFA state transition table is

|#States| ∗ 1024 bytes, where every pointer occupies four

bytes of storage. When a final-state is reached, a match has

been found, and the corresponding offset is marked. The

format of the state table allows its easy mapping to the dif-

ferent memory types that modern GPUs offer. Mapping the

state table to each memory yield different performance im-

provements, as we will see in Section 4.2.



...all work and no play...

Input Stream State Transition Table

int state; // current state

char ch; // input character

uint offset;// current offset

Output Array

offset patt_id

ch = ch_next;

state = T[state][ch]

if (state < 0) {
report(offset,id)

}

Automaton

Figure 3. DFA matching on the GPU.

We take advantage of all the available streaming proces-

sors of the GPU and utilize them by creating multiple data

processing threads. An important design decision is how to

assign the input data to each thread. Due to the nature of

fine-grained parallelism, we follow the simplest approach

and assign a different packet to each thread. This allows

the threads to operate independently and avoid any state

exchange or synchronization. A potential drawback is the

asymmetrical processing effort, due to the packets length

variation. However, this is not a problem since the size of

a typical network packet lies between 40 and 1500 bytes

(as of Ethernet links). In addition, we have try to sort the

packets, in order to minimize divergence of control flow,

however the cost of sorting is proportionally larger than the

gains from the symmetric processing.

Every time a thread matches a pattern, it reports it by ap-

pending it in an array that has been previously allocated in

the global device memory. Each thread maintains its own

memory space inside the array, hence adding new matches

can be performed in parallel, without the need of synchro-

nization. For each packet, we maintain a counter for storing

the total number of matches found in the packet, and a fixed

number of entries (currently 32) for saving the exact match-

ing offsets inside the packet. The match counter allows the

quick iteration of the matches at the CPU side, without read-

ing all the entries of the array. Unfortunately, in case the

counter exceeds 32, the portion of the packet, starting from

the last matching offset up to the end, needs to be rescanned

from the CPU, since only the first 32 matches will be re-

ported by the GPU. The intuition behind this scheme is that

it is better to keep the transferring costs low, by maintaining

a small buffer for the results, rather than sacrificing the over-

all throughput in order to be more precise for distinct cases.

In other words, having 32 matching offsets for 1500-byte

packets is fair enough for the majority of network applica-

tions that rely on pattern matching, such as NIDS and traffic

classification applications.

Threads:

Input

Data

State Transitions Table

1 2 N3

Figure 4. Multi-thread pattern matching on
the GPU.

3.3 Optimized Device Memory Manage-
ment

The two major tasks of DFA matching, as described in

the previous section, is reading the input data and fetch-

ing the next state from the device memory. These memory

transfers can take up to several hundreds of nanoseconds,

depending on the stream conditions and congestion.

In general, memory latencies can be hidden by running

many threads in parallel. Multiple threads can improve the

utilization of the memory subsystem by overlapping data

transfer with computation. To obtain the highest level of

performance, we performed several tests to determine how

the computational throughput is affected by the number of

threads. In Section 4.2 we discuss how the memory sub-

system is utilized when there is a large number of threads

running in parallel.

Moreover, we have investigated storing the network

packets and the DFA state table both in the global mem-

ory space, as well as in the texture memory space of the

graphics card. The texture memory can be accessed in a

random fashion for reading, without the need to follow any

coalescence rules. Furthermore, texture fetches are cached,

increasing the performance when read operations preserve

locality. In advance, texture cache is optimized for 2D spa-

tial locality; to that end, we have investigated the use of

both 1D and 2D textures. A programming limitation when

dealing with 2D textures, is that the maximum y-dimension

is equal to 65,536. Therefore, in order to map large state

tables, we split the initial table into several smaller (each of

which contains 64K states at most) and align them sequen-

tially. In order to find the transitions of a given state at the

matching phase, it is first divided with 65,536 in order to

find the subtable that resides.

When using 1D linear memory, the maximum transition

table that can be mapped to texture memory is 512 MB (to-



talling 524,288 states, since each state holds 1024 bytes for

transitions). The theoretical dimensions of the maximum

2D texture are equal to 64K × 32K elements, which are by

far greater than the total amounts of memory that a mod-

ern GPU holds (i.e., up to 3 GB currently). Therefore, for

cases that a single 1D state table is greater than 512 MB, we

bind only the initial part of the table to the texture memory,

leaving the rest in the global device memory.

Finally, one important optimization is related to the way

the input data is loaded from the device memory. Since

the input symbols belong to the ASCII alphabet, they are

represented with 8 bits. However, the minimum size for ev-

ery device memory transaction is 32 bytes. Thus, by read-

ing the input stream one byte at a time, the overall memory

throughput would be reduced by a factor of up to 32. To uti-

lize the memory more efficiently, we redesigned the input

reading process such that each thread is fetching multiple

bytes at a time instead of one. We have explored fetching

4 or 16 bytes at a time using the char4 and int4 built-in

data types, respectively. The int4 data type is the largest

data type that can be used for texture alignment, allowing

the utilization of about 50% of the memory bandwidth.

Finally, we tried to stage some data on the on-chip shared

memory, but there was not any improvement due to the fol-

lowing reasons. First, the tradeoff of copying the data to

the shared memory is worse than the benefit that the shared

memory can provide, since each byte of the input is ac-

cessed only once. Second, by not using the shared mem-

ory, the performance of global memory accesses is boosted,

since shared memory and L1-cache are implemented using

the same physical memory. Therefore, in our implementa-

tion we do not take advantage of the shared memory. Never-

theless, input data are transferred in a 128-bit register using

the int4 built-in data type, and are accessed byte-by-byte,

through the .x, .y, .z and .w fields.

3.4 Host Memory Optimizations

In addition to optimizing the device memory usage, we

considered two other optimizations: the use of page-locked

(or pinned) memory, and the reduction of the number of

transactions between the host and the GPU device.

The page-locked memory offers better performance, as

it does not get swapped. Furthermore, it can be accessed

directly by the GPU through DMA. Hence, the use of page-

locked memory improves the overall performance by reduc-

ing the data transferring costs to and from the GPU. The net-

work packets are placed into a buffer allocated from page-

locked memory through the CUDA driver. The buffer is

then transferred through DMA from the physical memory

of the host to the device memory of the GPU. To further

improve performance, we use a large buffer to store the con-

tents of multiple network packets, which is then transferred

Table 3. Memory requirements and properties
of each pattern set.

#Patterns Min./Max./Avg. Pattern DFA Size

SET1 2,000 5/34/19.42 33.02 MB

SET2 10,000 5/34/19.57 162.14 MB

SET3 30,000 5/34/19.57 478.36 MB

SET4 50,000 5/34/19.53 799.76 MB

to the GPU in a single transaction. This results in a reduc-

tion of I/O transactions over the PCI Express bus.

4 Performance Evaluation

Hardware. For our testbed we used the NVIDIA

GeForce GTX480 graphics card. The GPU is equipped with

480 cores organized in 15 multiprocessors and 1.5GB of

GDDR5 memory. Our base system is equipped with an In-

tel Xeon E5520 Quad-core CPU at 2.66GHz with 8192KB

of L3-cache, and a total of 12GB of memory. The GPU is

interconnected using a PCIe 2.0 x16 bus.

Data Sets. We use synthetic network traces and synthetic

patterns, in order to control the impact of the network packet

sizes and the size of the patterns to the overall performance.

The content of the packets, as well as the patterns, are com-

pletely random, following a uniform distribution from the

ASCII alphabet. Table 4 shows the properties of the pat-

terns and the memory requirements of the generated DFA

state machine. In all experiments, the data to be scanned

are transferred from the host memory, to the GPU memory

space in batches.

The structure of the input data force the matching engine

to exercise most of the code branches in all scenarios. Due

to their high entropy, random workloads can be assumed

quite representative for evaluating pattern matching [16];

specific scenarios, like virus detection or traffic classifica-

tion may perform better, due to the lower entropy between

the scanned content and the patterns themself.

4.1 Fetching the packets from the device
memory

In our first experiment, we evaluate the performance of

reading the packets from the memory of the GPU, using dif-

ferent sized word accesses. Figure 5 shows the performance

achieved when fetching 1, 4, and 8 bytes at a time. The hor-

izontal axis corresponds to the number of packets processed

at once. Each packet is processed by one thread, hence the

number of packets is equal to the number of threads. The

network packets (1500-bytes long) reside on the global de-

vice memory. Each byte in the packet requires two memory
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Figure 5. Impact of word accesses when
fetching data from the global device memory.

accesses: one access for fetching the contents of the packet,

and one access to the state machine, in order to find the next

state to traverse.

As we increase the number of threads, the multithreaded

capabilities of the GPU at hiding memory latencies, results

to an increase in the throughput sustained by the GPU. An

interesting observation is that performance levels-off pro-

portionally to the size of the word accesses. For example,

when fetching the input data one byte at a time, we observe

that the throughput sustained by the GPU remains constant

after processing 4096 packets at a time. Moreover, using

the char4 and int4 data types for loading the data from

the device memory has a positive impact to overall perfor-

mance. When reading the data one-byte at a time, unused

bytes are transferred for every device memory transaction,

since the minimum size per transaction is 32 bytes. The

char4 type uses four bytes per transaction and boosts the

performance up to four times. With 16 bytes per transac-

tion using the int4 type, an additional performance boost

of 300% is achieved, while the plateau starts when using

24576 threads.

It is clear that reducing the number of memory transac-

tions from the device memory, results in a significant in-

crease of the processing throughput. Finally, we observe

a performance degradation, when moving from 12288 to

16384 threads, which we speculate that is related to the in-

ternal GPU thread scheduler.

4.2 Evaluating Memory Hierarchies

Figure 6 shows the raw processing throughput obtained

for different types of memories. The horizontal axis corre-

sponds to the number of packets processed at once. Each

thread process a different packet in isolation, fetching 16-

bytes at once, which performs better as we have shown in

the previous experiment. By storing the network packets

and the state table to different types of memory, we mea-

sure how each type affects the processing throughput.
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Figure 6. Memory accesses impact on DFA
matching.

Storing the state table as a 2D texture significantly de-

creases the overall throughput. We speculate that state table

accesses exhibits bad 2D spatial locality, hence the 2D opti-

mized textured cache reduces the performance. In contrast,

when accessing the network packets, the 2D textures sustain

the best performance. All threads achieve coalesced reads

when accessing packet data, in contrast to DFA matching

that exhibits irregular memory accesses. This irregularity

might lead to cache thrashing, and it results in very poor

performance.

Regarding packet accesses, we observe that 1D texture

memory improves about 20% the performance, while 2D

textures provide a 50% improvement over global device

memory. On the other hand, global device memory and 1D

texture differ slightly for state table accesses, with global

memory providing about 10% better performance. The

GPU contains caches for both types of memory—a 12KB

L1-cache per multiprocessor for texture memory, and a

16KB L1-cache per multiprocessor for global memory—

hence the performance is almost the same for state table

accesses. When there is a cache hit, the latency for a fetch

is only a few cycles, against the hundreds of cycles required

to access the global memory.

An interesting observation, is that texture memory seems

to fit better for packet accesses, in contrast to state table ac-

cesses that performs better on global device memory. Al-

though texture memory does not require to follow any coa-

lescence patterns, it seems that is expose better cache per-

formance.
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Figure 7. Throughput sustained including

data transfers.

4.3 Bucket-based vs. Index-based packet
buffer

In the previous experiments, we evaluated the throughput

sustained from the GPU alone, when packet data reside on

the device memory. Unfortunately, graphics cards act as a

coprocessor in computer systems, hence it is essential that

data have to be transferred from the host memory, to the

memory of the graphics card, over the PCIe bus. Therefore,

the transferring scheme of the data plays a significant role

in the overall performance.

Figure 7 shows the throughput of pattern matching, us-

ing the fixed-buckets transferring scheme used in previous

works [18, 20]. We also include the throughput sustained

when data reside on the GPU memory, for comparison rea-

sons. When data transfers are not included, we can see

that the throughput achieved decreases when packet size

increase. For 100-byte packets, the GPU computational

throughput raises to 2023.7 Gbit/s, that fall to 186 Gbit/s

for 1500-byte packets. Smaller packets require less memory

accesses, hence do not suffer from excessive memory laten-

cies, as larger packets do. Unfortunately, the PCIe transfers

introduce a significant overhead to the overall throughput,

that is further influenced by the size of the packets.2 For ex-

ample, full-payload packets provide a 27.1 Gbit/s through-

put, while 200-byte and 100-byte packets fall to 4.3 Gbit/s

and 1.4 Gbit/s respectively, resulting to a 20x times devia-

tion. The fixed-bucket buffer, shown in Figure 2(a), suffer

from redundant data transfers, when small packets are col-

lected. Since each bucket is 1500 bytes, only the 1/15 of

the total space is utilized for a 100-byte packet.

In Figure 8, we compare our novel indexed packet buffer

scheme with the fixed-bucket array that was used in pre-

vious works. The performance for full-payload packets is

2The size of the packets include the headers of all encapsulated pro-

tocols (i.e., TCP/UDP, IP, and Ethernet), summing to 40 bytes size. At

pattern matching, headers are ignored and only the payload is scanned.
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Figure 8. Buckets versus Index Packet Buffer.

the same, hence our index-based scheme does not affect the

data parallelism at the scanning phase. For the fixed-bucket

scheme, full-payload packets provide the best-case perfor-

mance. Smaller packet sizes results to lower space utiliza-

tion in the fixed-bucket array. On the other hand, our index-

based scheme provides better space consumption, therefore

the performance is higher for small packets. Even for tiny

packets (i.e., 100 bytes length) the performance is about 5

times better, resulting to 6.49 Gbit/s throughput. The equiv-

alent performance for the single CPU core implementation

is 0.72 Gbit/s, hence our GPU version achieves the per-

formance that (assuming an ideal parallelization) would be

achieved using 41.2 CPU cores for 1500-byte packets, and

8.75 CPU cores for 100-byte packets.

The reason the performance of our index-based buffer

still degrades when packet sizes decrease, is the extra cost

spent for transferring and processing the matching results

on the CPU side—since we allocate a separate space for

each packet in order to store the matches, increasing the

number of packets results to larger results transfers and

more overhead at iterating through the returned matches.

4.4 Scalability to number of patterns

In the next experiment we evaluate how our experiment

scales with the number of patterns. We used the sets of pat-

terns shown in Table 4, and gave as input full-payload pack-

ets. Figure 9 shows the maximum throughput achieved for

our pattern matching implementation to perform searches

through rule-sets of sizes 2,000 up to 50,000 rules. We ob-

serve that the throughput remains constant independently of

the number of patterns, a behavior expected for a DFA ap-

proach.

4.5 Scaling Factor

To measure how our optimized GPU pattern matching

implementation has improved during the evolution of GPU

models, we used three additional older-generation graphics
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tern matching implementation with all opti-
mizations described in Section 3.3, on differ-

ent generation of GPU and CPU models.

cards: a GeForce 8800GT, which was released on Decem-

ber 2007, a GeForce 9800GX2 released 4 months later, on

March 2008, and a GTX295 released on January 2009. We

only measure the raw computational throughput achieved

on the GPU (no data transfers over the PCIe are included).

Figure 10 shows that in less than two years, the computa-

tional throughput has increased about 6 times, from 28.1

Gbit/s to over 180 Gbit/s.

It must be noted that GTX295 consists of two printed

circuit boards (PCBs). Since we measure execution time for

both boards, the computational throughput achieved reaches

the performance of GTX480. However, if we include the

data transfers, the throughput of GTX295 matches half of

the throughput of GTX480, since both PCBs use the same

PCIe bus. For comparison reasons, we also measured and

include the respective numbers for various generations of

CPUs.

5 Related Work

Improving the performance of pattern matching algo-

rithms has been extensively studied over the years. Specifi-

cally, the advent of general-purpose graphics processors has

led researchers toward implementing pattern matching al-

gorithms on GPUs. Gnort [18, 20] was the first attempt

that sufficiently utilized the graphics processors for string

searching and regular expression matching operations. For

performance issues, Gnort utilized a DFA for pattern match-

ing, at the cost of high memory utilization. GrAVity [19]

reduces the memory consumptions of the resulting DFA, by

compiling only the prefices (i.e., the first n-bytes) of the

virus signatures.

Other approaches, adopt non-deterministic automata, al-

lowing the compilation of very large and complex rule sets

that are otherwise hard to treat [7]. Furthermore, Gnort

takes advantage of DMA and the asynchronous execution

of modern GPUs, to partially hide the data transfer costs

from the host memory to the device memory, and vice versa.

Therefore, Gnort imposes concurrency between the opera-

tions handled by the CPU and the GPU. Many other ap-

proaches followed the above scheme [9], without significant

differences in the architecture and the performance benefits.

In order to speed-up the pattern matching computation

on the GPU, Smith et al. [14] and Tumeo et al. [16, 17], re-

designed the packet reading process, such that each thread is

fetching four bytes at a time, instead of one. Since the input

symbols belong to the ASCII alphabet, they are represented

with 8 bits. However, the minimum size for every device

memory transaction is 32 bytes. Thus, by reading the input

stream one byte at a time, the overall memory throughput

may be reduced by a factor of up to 32. To overcome this

limitation, the authors use the char4 built-in data type (4-

byte size), to read the content of each packet. Unfortunately,

they do not experiment with larger word accesses (e.g., 16-

byte offered by the int4 data type).

Our work differs from previous work in that we exten-

sively explore all available memory hierarchies that modern

GPUs are provide. In previous works, the authors used the

texture memory for storing the state transition table, as well

as the network packets. However, Fermi architecture pro-

vides caches for both texture and global memories, hence

using both types of memories results to better cache perfor-

mance.

In addition, most of the previous works do not concen-

trate on data transfers to the memory of the GPU. Although

the pattern matching on the GPU can reach several hundreds

of Gigabits per second (depending on the packet size), the

limit factor of the end-to-end performance is the PCIe bus

and the trasfer throughput that can sustain. Therefore, an

important design decision for packet processing on the GPU

is the transferring of the packets.



Previous works that used a static buffer scheme (i.e.,

a constant space for each packet), resulted to low trans-

fer throughput, especially for low packet sizes, where the

packet buffer is transferred to the GPU almost empty. In

contrast, we explore a novel schema, that enforce two prop-

erties: first, it ensures that no redundant data are transferred

to the GPU every time. Second, it does not affect the data

parallelism at the scanning phase. Our scheme can sustain a

6.49 Gbit/s throughput for small packets, and a 29.7 Gbit/s

for full-payload packets. Comparing with the Tesla C2050

throughput, reported in [16], our implementation is about

three times faster.

6 Conclusion

In this paper we presented an efficient DFA implementa-

tion of both string searching and regular expression match-

ing on GPU architectures. We evaluated our implemen-

tation using the different memory hierarchies provided by

modern GPUs and explored the various trade-offs. We also

presented several optimizations for efficiently implement-

ing the matching algorithms to the GPU, as well as a packet

buffering scheme that improves the transferring costs with

the high parallelization on the GPU. Our index-based packet

buffer is able to reduce the large overheads due to small

packets, which are incurred in previous implementations.

As part of our future work, we plan to explore alternative

designs of the state table with a focus on memory space

efficiency. Some potential directions for achieving this goal

include the conversion of the state transition table into other

data structures, such as a banded matrix.
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