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Abstract years now, but even so, no adequate solution emerged. The
most common approaches are based on static analysis tech-
Even the most advanced reverse engineering techniquesiques like value set analysis [8], aggregate structune-ide

and products are weak in recovering data structures in tification [38] and combinations thereof [39]. Some, like
stripped binaries—binaries without symbol tables. Unfor- CodeSurfer/x86, are available as experimental plug-ins fo
tunately, forensics and reverse engineering without data IDA Pro [24]. Unfortunately, the power of static analysis is
structures is exceedingly hard. We present a new solution,quite limited and none of the techniques mentioned above
known asHoward, to extract data structures from C binaries can adequately handle even some of the most common data
without any need for symbol tables. Our results are signifi- Structures — like arrays.
cantly more accurate than those of previous methods — suf-
ficiently so to allow us to generate our own (partial) symbol
tables without access to source code. Thus, debugging suc
binaries becomes feasible and reverse engineering become

simpler. Also, we show that we can protect existing binaries (i.e., it lumps together all fields in a structure). This i no

from popular mermory corrup_tlo_n attacks, without access to a problem for Laika’s application domain — estimating the
source code. Unlike most existing tools, our system uses dy-

namic analysis (on a QEMU-based emulator) and detects similarity of different samples of malware by looking at the

data structures by tracking how a brodram uses memor approximate similarity of their data structures. However,
y 9 brog Y- for forensics and reverse engineering this is wholly ineffi-

cient.

Some recent projects have therefore resorted to dynamic
Igmalysis. Again, success has been limited. The best known
examples are Laika [22] and Rewards [31]. Laika's detec-

fion is both imprecise and limited to aggregates structures

Rewards [31], presented in last year's NDSS, builds on a
technique originally pioneered by Ramilingam et al. in ag-
gregate structure identification (ASI) [38]. The idea issim

State of the art disassemblers are indispensable for reple: whenever the program makes a call to a well-known
verse engineering and forensics. The most advanced onedyunction (like a system call), we know the types of all the
like IDA Pro [24] and OllyDbg [2], offer a variety of tech- arguments — so we label these memory locations accord-
niques to help elevate low-level assembly instructions to ingly. Next, we propagate this type information backwards
higher level code. For instance, they recognize known li- and forwards through the execution of the program. For
brary functions in the binary and translate all calls to éhes instance, whenever labeled data is copied, the label is also
functions to the corresponding symbolic names in the pre-assigned to the destination. Rewards differs from ASI in
sentation to the user. Some are sufficiently powerful to han-that it applies this technique to dynamic rather than static
dle even binaries that are statically linked and ‘strippeal’  analysis.
that they do not contain a symbol table.

However, they are typically weak in reverse engineering ) N
data structures. Since real programs tend to revolve arounéhose data structures that appear, directly or indireicttfie

their data structures, ignorance of these structures make%lrguments of system calls (or the well-known library func-

; . ons). This is only a very small portion of all data struetsir
the already complex task of reverse engineering even slowet . . .
. in a program. All internal variables and data structures in
and more painful.

. . the program remain invisible.
The research community has been aware of the impor- prog
tance of data structures in reverse engineering for several In this paper, we describe a new technique known as

1. Introduction

Either way, by definition the technique only recovers



Howard® that greatly improves on these existing techniques. | normal test
It is complementary to Rewards, but much more powerful suites
as it also finds internal variables. Like Rewards and Laika, @ program
Howard is based on dynamic analysis @ D E> DSDigger
The main goal offoward is to furnish existing disassem- Inputs Emulator splaa
blers and debuggers with information about data structures;,qe coverage )
and types to ease reverse engineering. For this purpose, it (KLEE)
automatically generates debug symbols that can be used by
all common tools. We will demonstrate this with a real anal- Figure 1. The main stages iHoward.
ysis example usingdb. This is our first application.
In addition, however, we show that the data structures
allow us to retrofit security onto existing binaries. Specif the implementation is also for Linux. However, the ap-
ically, we show that we can protect legacy binaries againstproach is not specific to any particular OS.
buffer overflows. This is our second application.

KLEE replay

Outline The remainder of this paper is organized as fol-
High-level overview. Precise data structure recovery is lows:

difficult, because the compiler translates all explicitiys- 2. Related work 6. Limitations _
tured data in the source to chunks of anonymous bytes inthe - Challenges , 7. Code transformation
binary. Data structure recovery is the art of mapping them 4 Designand implementation 8. Evaluation

5. Applications 9. Conclusions

back into meaningful data structures. To our knowledge, no
existing work can do this. The problem becomes even more
complicated in the face of common compiler optimizations 2 EXisting work and what we took from it
(like loop unrolling, inlining, and elimination of dead ced
and unused variables) which radically transform the binary ~ Recovery of data structures is most obviously relevant
Howard builds on dynamic rather than static analysis, to the fields of debugging and reverse engineering. Still,
following the simple intuition that memory access patterns even the most advanced tools (like IDA Pro [24], and
reveal much about the layout of the data structures. Some-CodeSurfer [8]), are weak at identifying data structures.
thing is a structure, if it is accessed like a structure, and a The limited support for data structure recovery they pro-
array, if it is accessed like an array. And so on. vide comes exclusively in the form of static analysis. These
Like all dynamic analysisHoward’s results depend on  techniques are inadequate, as we shall see below. As far
the code that is covered at runtime — it will not find data as we knowHoward is very different from any existing ap-
structures in code that never executes. This paper is noproach. Nevertheless, we have been influenced by certain
about code coverage techniques. Rather, as shown in Figprojects. In this section, we summarize them and their rela-
ure 1, we use existing code coverage tools (like KLEE) and tion to Howard.
test suites to cover as much of the application as possible,
and then execute the application to extract the data struciatic analysis. A first stab at recovering data without
tures. _ executing the program is to try to identify all locations
In summaryHoward is able to recover most data Struc-  that |ook like variables and estimate the sets of values that
tures in arbit.rallry (gcc—gen_er.ated) binaries with a high de- they may hold [8]. Known as Value Set Analysis (VSA),
gree of precision. While it is too early to claim that the this approach uses abstract interpretation to find (over-

problem of data structure identification is solvethward approximations of) the sets of possible values.
advance_s the state of the art significantly. For instance, we = ¢ course, accurately pinpointing the locations that hold
are the first to extract: variables in a program is not simple, but studying the way

, in which the program accesses memory helps. Incidentally,
° preqse data structures on both hez.ap "?m.d stac?k; this idea originates in efforts to deal with the Y2K problem
e not just aggregate structures, also individual fields; i, 5jg COBOL programs and is known as Abstract Structure
e complicated structures like nested arrays. Identification (ASI) [38]. Translated into C terms, ASI at-
) . . . . tempts to partition memory chunks staticallysitr uct s of
We implemented all dynamic analysis techniques in 5. oy and variables, depending on accesses. For insifance,
an instrumented processor emulator based on Qemu [10] gack frame holds 40 bytes for local variables, and the pro-
Since single process emulation is available only for Linux, gram reads the 4 bytes at offset 8 in the range, AS| classifies
1The system was named after Howard Carter, the archaeologist w  the 40 bytes as a struct with one 4-byte variable wedged
excavated the tomb of Tutankhamun. between 2 arrays. As more addresses are referenced, ASI




eventually obtains an approximate mapping of variable-lik by the Laika method was very small and we therefore re-
locations. moved it.

ASI has another clever trick to identify data structures  Rewards [31] builds on the part of ASI that propagates
and types, and that is to use the type information from sys-type information from known parameter types (of system
tem calls and well-known library functions. As the argu- calls and library functions). Unlike ASI, however, it do@s s
ment types of these calls are known, at every such call, ASIdynamically, during program execution. All data structure
tags the arguments with the corresponding types and propthat are used in, or derived from, system calls or known tem-
agates these tags through the (static) analysis. plates are correctly identified. However, Rewards is (funda

The culmination of these static techniques is a combina- mentally) not capable of detecting data structures that are
tion of VSA and ASI by Balakrishnan et al. [39]. This pow- internal to the program.
erful static analysis method is also available as an experi- Howard emphatically does not need any known type to
mental plug-in for IDA Pro, known as CodeSurfer/x86 [7]. recover data structures, but whenever such information is

At this point, however, we have to mention that all of available, it takes advantage of it to recows@mantics
these static techniques have problems handling even thé-or instance, it may help to recognize a structure as a
most basic aggregate data structures, like arrays. Nor carsock_addr structure, a file descriptor, or an IP address.
they handle some common programming cases. For in- One of the more complicated featuresHward is its
stance, if a Cstruct is copied using a function like loop detector, which we use to detect array accesses. Loop-
mencpy, VSA/ASI will misclassify it as having many  Prof [33] also detects loops dynamically. However, it is
fields of 4 bytes, simply becauseenctpy accesses the Wweaker tharHoward and cannot detect nested loops.
memory with a stride of 4 (on a 32 bit machine). Also,
they cannot deal with functions likaf | oca’. In contrast, Dynamic protocol format reverse engineering. Differ-
Howard does not depend on static analysis at all. ent in nature, but still related is the problem of automatic

In a more constrained setting, Christodorescu et al. showprotocol reverse engineering. Systems like Polyglot [12],
how static analysis of x86 executables can help recover[44], AutoFormat [30], Tupni [23], ReFormat [43], and
string values [18]. Their technique detects C-style s&ing Prospex [20], aim to analyze how applications parse and
modified by thd i bc string functions. handle messages to understand a protocol’'s format. They
typically do so dynamically, although some are supple-
mented by static analysis. While different in various re-

covers data structures during execution in a novel way [22]. gards, these systems traclg da_ta C,Om'ng from the network
First, Laika identifies potential pointers in the memory and by observing the appl|cat|on.s behaw.or.try to detect
dump —based on whether the contents of 4 byte words lookConstant protocol fields, length fields, dehrmters, and so
like a valid pointer— and then uses them to estimate objecton' The most advanced ones also1 cluster d|ffer§nt types of
positions and sizes. Initially, it assumes an object tot star MESSages 1o recover the protocol’s state machine. One of
at the address pointed to and to end at the next object inoward’s array detection methods was influenced by that of
memory. It then converts the objects from raw bytes to se- PoYglot [12]. Still, it is considerably more advanced. In
quences of block types (e.g., a value that points into theaddmpn, we add a second, completely new array detection
heap is probably a pointer, a null terminated sequence oftechnique.
ASCII characters is probably a string, and so on). Finally,
it detects similar objects by clustering objects with samil ~ Security. The security application in Section 5 is inspired
sequences of block types. In this way, Laika detects lists Py WIT [4] and similar approaches [5, 45]. WIT is a com-
and other abstract data types. piler extension that analyzes C source code to detect which

On the other hand, Laika’s detection is both imprecise instructions can write which objects. It then generates in-
and limited to aggregates. For instance, it may observesStrumented object code to prevent instructions from wgitin
chunks of bytes in what looks like a list, but it does not de- o different objects, thus eliminating memory error exfsloi
tect the fields in the structures. For debugging, reverse en-With Howard, we do something similar, except that we do
gineering, and protection against overflows, this is wholly Not require the source code. Thus, we can apply our tech-
insufficient. The authors are aware of this and use Laika Nique to legacy binaries (at the cost of some additional-over
instead to estimate the similarity of malware. head).

Originally, Howard borrowed from Laika the idea of dy-
namically classifying blocks of null-terminated printabl 3 Recovery by access patterns: challenges
characters as “probable string blocks” to improve the speed
of string detection. However, as we improved our default  Howard aims to answer questions like: “What are the
string detection method, the additional accuracy provided variablesst r uct s, and arrays in the program and what are

Dynamic analysis. Eschewing static analysis, Laika re-



their layouts?” As explained in Section 2, for a subset of  For heap memory, such simple pointers will not do.
these variables (for which we have type sinks), we are alsoConsider any_mal | oc wrapper function which invokes
able to recover semantics, so that we can answer questionsal | oc and checks whether the return value is null. Since
like: “Is the 4-byte field in thisstruct an IP address, a ny_mal |l oc can be used to allocate memory for various
pointer, or an integer?” structures and arrays, we should not associate the mem-
Howard recovers data structures by observing how mem- ory layout of a data structure allocated fay_mal | oc with
ory is usedat runtime. In the CPU, all memory accesses ny._nal | oc itself, but rather with its caller. As we do not
occur via pointers either using direct addressing or indi- know the number of suciml | oc wrappers in advance, we
rectly, via registers. The intuition behind our approach is associate heap memory with a cslack We discuss call
that memory access patterns provide clues about the layoustacks in detail in Section 4.1.
of data in memory. For instance, Af is a pointer, then a

dereference of ( A+4) suggests that the programmer (and Ppointer identification To analyze memory access pat-
compiler) created a field of sizeat A. Intuitively, if Aisa  terns, we need to identify pointers in the running program.
function frame pointer; (A+4) and* (A-8) arelikelyto  Moreover, for a given addre@A+4, we need to knovh,

point to a function argument passed via the stack, and a lo-the basepointer from whichB was derived (e.g., to find

cal variable, respectively. Likewise, Ais the address of a  nested structures). However, on architectures %S,
structurex ( A+4) presumably accesses a field in this struc- there is little distinction between registers used as axd®
ture, and finally, in the case of amt [ ] array,x (A+4) is  and scalars. Worse, the instructions to manipulate them are
its second element. As we shall see, distinguishing betweenthe same. We only know that a particular register holds a
these three scenarios is one of the challenges we need tQalid address when it is dereferenced. Thereferayard

address. must track how new pointers are derived from existing ones.
It is not the only issue. In the remainder of this sec- We discuss our solution in Section 4.2.

tion, we discuss the main obstacles that we had to remove to
makeHoward possible. Some are relatively straightforward Missing base pointers As mentioned earlietioward de-

and for these we discuss immediately how we solved them g (s new structure fields when they are referenced from the
Others are not, and we postpone their solution to Section 4.qicture base. However, programs sometimes use fields

where we discuss our approach in full. ~without reference to a base pointer, resulting in misclassi
Even though we discuss many details, due to space limi-c4iions. Figure 2 illustrates the problem. Fieldem y is
tations, we are not able to discusgerythingn great depth.  jpjtialized via the frame pointer registeBP rather than the
We realize that some readers are interested in all the sletail 5q4qress oel em Only the update instruction hints at the
and for this reason we made available a technical report thalyjstence of the structure. Without it, we would character-
contains enough information to allow one to reproduce our ;¢ this memory region as composed of 3 separate variables:
systen_"n [42]. From time to time, we will refer readers inter- pel em x, andy (but since the program here does not ac-
ested in details to the report. tually use the connection between the fieldandy, this
partially inaccurate result would be innocuous). A missing
Memory allocation context Our work analyzes a pro- base pointer is of course fandamentalimitation, as we
gram’s use of memory, which includes local function vari- cannot recognize what is not there. In practice, however, it
ables allocated on the stack, memory allocated on the heapdo€s not cause many problems (see also Section 8).
and static variables. Static memory is not reused, so it can
be uniquely identified with just its address. However, both Multiple base pointers Conversely, memory locations
the runtime stack and heap are reused constantly, and so ean be accessed throughultiple base pointers, which
description of their data structures needs to be coupldd wit means that we need to decide on the most appropriate one.
acontext Observe that fieldl em y from Figure 2 is already referred
For the stack, each invocation of a function usually holds to using two different base pointers, the frame poi@P
the same set of local variables and therefore start addresseand pel em (EAX). While this particular case is tractable
of functions are sufficient to identify function frames. A (aspel emis itself based orEBP), the problem in general
possible exception occurs with memory allocated by calls is knotty. For instance, programs often use functions like
to functions likeal | oca, which maydepend on the con- nenset andnencpy to initialize and copy data structures.
trol flow. As a result, the frames of different invocations Such functions access all bytes in a structure sequentially
could differ. WhileHoward handles these cases correctly, typically with a stride of one word. Clearly, we should not
the details are tedious and beyond the scope of this papeclassify each access as a separate word-sized field. This is
(see [42]). For now, it suffices to think of function start ad- a serious problem for all approaches to date, even the most
dresses as the frame identifiers. advanced ones [39].



typedef struct {  <fun> cessor emulator, it can dynamically obsecad | andr et

int x; [1] push %bp instructions, and the current position of the runtime stack
Vol ey L2 o sonno, by A complicating factor is that sometimesl | is used not
[4] nov $0x1, to invoke a real function, but only as part otal | / pop
void fun() { {2T°§Tif5b§’oxz, sequence to read the value of the ingtruction pointe_r. Simi-
- 0x8( %ebp) larly, not everyr et has a correspondinzgl | instruction.
cperem " [O] mov -Ox4(3ebp). We define afunctionas the target of @al | instruc-
elemx = 1; [7] nov $0x3, tion which returns with a et instruction. Values of the
PR R stack pointer at the time of the call and at the time of the
pel em = &el em [9] ret return match, giving a simple criterion for detecting uncou

pelem>y = 3; pledcal | andr et instructiong.

Whenever we see a function call, we push this informa-

Figure 2. The function initializes its local variablel em tion to aHoward internal stack, which we refer to as DSD-
Pointerpel emis located at offset4 in the function frame, Stack.

and structurel emat- Oxc. Instructions 4 and 5 initialize

x andy, respectively. RegistdfAX is loaded with the ad- 4.2 Pointer tracking

dress ofpel emin instruction 6, and used to update figid

in7.

Howard identifies base pointers dynamically by tracking
the way in which new pointers are derived from existing
) ) ones, and observing how the program dereferences them. In
~ One (bad) way to handle such functions is to black- ,qition, we extractoot pointers that are not derived from
list them, so their accesses do not count in the analysis.,y gther pointers-oward identifies different root pointers

The problem with blacklisting is that it can only cope with " ssatically allocated memory (globals and static vagab
known functions, but not with similar ones that are part of in C functions), heap and stack.

the application itself. Instead, we will see thadward uses For pointer tracking, we extended the processor emula-

a heuristic that selects the “less common” layout. For in- tor so that each memory location hatag, MBase(addr ),

stance, it favors data structures with different fields @wer | 1 stores its base pointer. In other words, a tag speci-

array of integers. fies how the address of a memory location was calculated.
Likewise, if a general purpose register holds an address, an

Code coverage As Howard uses dynamic analysis, its ac-  associated tagRBase(r eg), identifies its base pointer.

curacy increases if we execute more of the program’s code. e first present tag propagation rules, and only after-

Code coverage techniques (using symbolic execution andward explain how root pointers are determined.

constraint solving) force a program to execute most of its  \When Howard encounters a new root pointéy it sets

code. ForHoward, the problem is actually easier, as we do vBase(A) to a constant valueoot to mark thatA has been

not need all code paths, as long as we see all data strucaccessed, but does not derive from any other pointer. When

tures. Thus, it is often sufficient to execute a function gnce a pointerA (root or not) is loaded from memory to a register

without any need to execute it in all possible contexts. In yeg, we setRBase(r eg) to A.

our work, we use KLEE [13]. Recentwork at EPFL (kindly  The program may manipulate the pointer using pointer

provided to us) allows it to be used on binaries [15]. Fig- arithmetic &dd, sub, orand). To simplify the explanation,

ure 1 illustrates the big picture. In reality, of course, LE e assume the common case, where the program manipu-

is not perfect, and there are applications where coverage isates pointers completelyeforeit stores them to memory,

poor. For those applications, we can sometimes use existing e, it keeps the intermediate results of pointer aritficnet

test suites. operations in registers. This is not a limitation; it is e&sy
handle the case where a program stores the pointer to mem-
4  Howard design and implementation ory first, and then manipulates and uses it later.

During pointer arithmetic, we donot update the

We now discuss the excavation procedure in detail. In RBase(r eg), but we do propagate the tag to destination reg-

the process, we solve the remaining issues of Section 3.  iSters. As an example, let us assume that after a number
of arithmetic operations, the new value rafg is B. Only

4.1 Function call stack when the program dereferencesg or stores it to mem-
ory, do we associatB with its base pointer which is still
As afirst step in the analysisioward keeps track of the 2|n rare cases, functions are reached by a jubpward merges these

function call stack. Asdoward runs the program in a pro-  functions with the caller. We discuss the impact on the aiglpg42].



kept inRBase(r eg). In other words, we se¥iBase(B) to A.

This way we ensure that base pointers always indicate valid
application pointers, and not intermediate results of {goin
arithmetic operations.

Extracting root pointers  We distinguish between 3 types
of root pointers: (a) those that point to statically all@zht
memory, (b) those that point to newly allocated dynamic
memory, and (c) the start of a function frame which serves

Figure 3. Example of a memory area accessed using mul-
tiple base pointers. The arrows on top, illustrate a function
like menset that accesses all fields with a stride of 4 bytes,
while the 'real’ access patterns, below, show accesses to the
individual fields.

as a pseudo root for the local variables.

Dynamically allocated memorylo allocate memory at
runtime, user code in Linux invokes either one of the mem- T — T
ory allocation system calls (e.gmap, mmap2) directly, or 1. \ variable offsets \
it uses one of théi bc memory allocation routines (e.g.,
mal | oc). SinceHoward analyzes each memory region as
a single entity, we need to retrieve their base addresses and 2 ‘
sizes. Howard uses the emulator to intercept both. Inter-
cepting the system calls is easy - we need only inspect the
number of each call made. Fbr bc routines, we deter-
mine the offsets of the relevant functions in the libraryd an
interpose on the corresponding instructions once theriibra

IS Ioadgd. ) Howard observes different access patterns to the same ob-
Statically allocated memoryStatically allocated mem- ject, it prefers pattern 1 over patterns 2 and 3, and 2 over
ory includes both static variables in C functions and the 3,

program’s global variables. Root pointers to staticallg-al
cated memory appear in two parts of an object file: the data
section which contains all variables initialized by theruse
- including pointers to statically allocated memory, and th
code section - which contains instructions used to acces
the data. To extract root pointers, we initially load poiste
stored in well-defined places in a binary, eEL.F headers,
or relocation tables, if present. Next, during executibani
addressA is dereferencedyiBase(A) is not set, andh does
not belong to the stack, we conclude that we have just en- As a program often accesses a memory locaton
countered a new root pointer to statically allocated memory through multiple base pointers, we need to pick the most
Later, if we come across a better base pointerafthhan A appropriate one. Intuitively, selecting the base poirtiat t
itself, MBase(A) gets adjusted. is closestto the location, usually increases thamber of
Stack memoryFunction frames contain arguments, lo- hopsto the root pointer, and so provides a more detailed
cal variables, and possibly intermediate data used in cal-description of a (nested) data structure.
culations. Typically, local variables are accessed via the However, as shown in Figure 3, functions likenset
function frame pointerEBP, while the remaining regions andnmentpy often process composite data structures. These
are relative to the current stack positi&sgp). functions are completely unaware of the actual structude an
As we do not analyze intermediate results on the stack,access the memory in word-size strides. Thus, for 32 bit
we need to keep track of pointers rooted (directly or indi- machines, such functions continuously calculate the next
rectly) at the beginning of a function frame only (often, but address to dereference by adding 4 to the previous one cov-
not always, indicated by EBP). Usually, when a new func- ering the entire data structure in 4 byte strides. By applyin
tion is called, 8 bytes of the stack are used for the returnthe aforementioned heuristic of choosing the closest base
address and the calles8P, so the callee’s frame starts at pointer, we could easily build a meaningless recursively
( ESP- 8) . However, other calling conventions are also pos- nested data structure.
sible [42]. This means that we cannot determine where the Forst r uct s the solution is often simple. When the pro-
function frame will start. To deal with this uncertainty, we gram accesses the memory twice, once with constant stride
overestimate the set of possible new base pointers, and markqual to the word size (e.g., irenset ) and once in a dif-
all of them as possible roots. Thusyward does notrelyon  ferent manner (when the program accesses the individual

/\/\
stride != wordsize ‘

Yl Vel V.l Vel V.l Vel \
‘ stride == wordsize ‘

L 32b, 32b, 32b, 32b 32b 32b 32b 32}

w

Figure 4. Different memory access patterns. When

the actual usage of thgBP register. If, due to optimizations,
BP does not point to the beginning of the frame, nothing
ad happens.

4.3 Multiple base pointers



fields), we should pick the latter. In arrays, however, multi  No loop unrolling. We explain what happens for the non-
ple loops may access the array. To deal with this problem,optimized case first and worry about loop-unrolling later.
we use a similar intuition and detect arrays and structuresHoward identifies each loop with a timestamp-like id @)
dynamically with a heuristic preference for non-regular ac which it assigns to the loop head at runtime when the back
cesses and/or accesses at strides not equal to the word sizedge is taken for the first time. See Figure 5. At this point
For instance, if a program accesses a chunk of memory inthis loop head is pushed on DSDStack. So, if a loop exe-
two loops with strides 4, and 12, respectively, we will pick cutes just once and never branches back for a second iter-
as base pointers those addresses that correspond to¢he lattation, it does not get a nelv d. Howard assigns the top
loop. Intuitively, a stride of 12 is more likely to be specific 1i d as a tag to each memory locatigrthe code accesses:
to a data structure layout than the generic 4. M.i d (A): =l i d. Thus, memory accesses in the first itera-
Our current array detection introduces three categories oftion of a loop get the parenti d. Tags are kept similarly
loop accesses (see Figure 4): (1) accesses with non-constamo MBase, in the emulator. If there are no loops on the call
stride, e.g., an array of strings, (2) accesses with a consta stack, pushed functions are assigned héw. Otherwise,
stride not equal to the word-size, e.g., 1 or 12, and (3) ac-new functions inherit the top lodp d.
cesses with stride equal to the word-size. Our heuristic, Writing B <— A to denote that pointeB is derived from
then, is as follows. First select the base pointers in the bes pointer A, conceptuallyHoward detects arrays as follows.
possible category (lower is better), and next, if needezk pi  When pointerB, with B «<— A, is dereferenced in iteration
the base pointer closest to the memory location. Next, we;, while Awas dereferenced in a previous iteratisioyard

discuss arrays and loops in detail. treatsA as a likely array elemeht It stores information
_ about the array in the loop head on DSDStack. The more
4.4 Array detection iterations executed, the more array elemeidsvard dis-
covers.

Array detection is both difficult and important — espe-
cially for security. Howard recovers arrays when the pro-
gram accesses them in loops. Fortunately, this is true forLoop unrolling. The algorithm is simple and intuitive and
the vast majority of arrays. In the simplest case, the pro- sketches the main idea fairly accurately, but it is a (s)ight
gram would access an array in an inner loop, with one arraysimplification of Howard’s real array detection algorithm.
element in each loop iteration. However, a general solu- In reality, we cannot just look at loop iterations, as common
tion must also handle the following scenarios: (a) multiple optimizations like loop unrolling force us to look at these
loops accessing the same array in sequence, (b) multiplgoatterns within a single iteration also. For completeness,
nested loops accessing the same array, (c) loop unrollingwe briefly explain the detalils.
resulting in multiple array elements accessed in one loop  Assume that the loop id of the current loop.isd, while
iteration, (d) inner loops and outer loops not iteratingrove the previous element on the call stack has.idis. Also
the same array, and (e) boundary array elements handleédssume that the pointéris dereferenced for the first time
outsidethe loop.Howard uses several complementary array in the loopT, whereC < B andB « A,
detection methods to deal with all these cases. We divide Howard now treatsB as a ||ke|y arrays element if the fol-
these methods in two major classes depending on the wayowing conditions hold:
array elements are accessed by the program.

Loops in real code implement one of two generic 1. M.id (B) > Li dr, which means thas was accessed in
schemes for deriving array element addresses: (1) rela- the current |oop (regarc”ess of the itera[ion),
tive to the previous element, realized in instructions like

el enr+ (prev++), and (2) relative to the base of an array, 2 i g (A) > Li ds, which means thaa was accessed

cases. We discuss limitations of our array detection method

in Section 6. It stores information about the array T the top loop
head on DSDStack. Whenever a new piece of information

4.4.1 Accesses relative to previous elements is addedHoward tries to extend arrays already discovered

To handle loop accesses in a buffer where each element ad the top loop head. We will discuss shortly how this works

dress is relative to a previous omggward is set up to track when multiple loops access the same array. First, we look

. . : .. at boundary elements.
chainedsequences of memory locations. For instance, if

= ++ i i i
el em = «(pprev++), then the p0|_nter tel_ emis dem./ed_ 3There is a subtle reason why we do not clasBifgs an array element
fromppr ev. A few of these scenarios are illustrated in Fig- (yet): if the array consists aft r uct s, B may well point to a field in a

ure 4. st ruct, rather than an array element.




@) (b)

S T.T.
s [ cem-aray | . [alefefafe[to[n]i]i]
T ch;cilir:it cond 2
U‘ exit ‘V‘ elem++ 8. ‘a’b‘c‘d‘ei‘f“g‘h‘i ‘J‘

Figure 5. (a) Control flow graph of a loop that derives array element addressative to the previous element. Basic blGEk
is the loop head, and— T the back edge(b) An example ten-element array accessed by the loop in (a). Threadiagresent
the information about the array gatheredHbgward in different points of the loop execution. The dashed squares indicatedbie
recently accessed array element. Arrows represent base poistdeseamined by the loofs and T above the array elements are
assigned during the loop execution and indicate loop headvdsds. In step 1Howard checks thag, b, andc were accessed
in the current loop (or just before), and decides (step 2) to storeniafiion about a new arrgyb] . It notes that the array should
possibly be extended later to contairandc. As more iterations of the loop are executed (step 3), the array containemrs

[ b- e] with a andf marked as potential extensions.

Boundary elements Because the first element of an array

is often accessed before a new id is assigned to the loop 1 el 12 ~2  ai2
wW1als a a [ AmyA ]
head (remember, a new loop id is assigned only once the
back edge is takenijoward explicitly checks for extending . " = > >
: a1l aj ﬂxl
the array. It looks for earlier memory accesses at the base b, “ lArrayAl I Arfay B ”

pointers used to recursively derive the first element of the
array. Before we continue with the algorithm, see Figure 5

for an example array detection scenario. Figure 6. Array accesses from the base pointer. The la-

bels denote whether the accesses are by instruction il or i2.

In (a) we see a single array accessed by multiple instructions
Multiple loops To handle arrays accessed in multiple in a single loop, while in (b), the access patterns are similar
loops or functions, arrays that are found in inner loops are  except that we now have two arraysoward distinguishes
passed to the previous element on DSDStack, whether it be the two cases by looking for a shared base pointer.

a function or an outer loop nodeHoward must decide if

the findings of the inner exiting loop ought to be merged

with the outer loop results or whether they represent inter- .

nal arrays of nested structures and should be kept separatel ~ FOr this type of accessioward uses a second method
Intuitively, Howard waits to determine whether (1) the array that bears a superficial resemblance to the array detection
detected in the internal loop will be further extended in the Method in Polyglot [12], but is considerably more power-
outer loop — hinting at the existence of an iterator which ful. Essentially,Howard tracks all instructions in a loop .
promptsHoward to merge the results, or (2) whether the ar- that access a set of addresses that can be mapped to a lin-
ray detected in the internal loop is not extended furthes, an €ar spaces{ride x x + of fset) and that all share the same

kept independent from the outer loop — promptigvard base pointer (See Figure 6.a). If the accesses share a base
to classify it as a nested structure. pointer, they almost certainly belong to the same array) eve

if the accesses came from different instructions in the loop
Moreover, we can easily extend the array to include bound-
ary elements (e.g., a last element that is accessed outside

The above technique helps us detect sequentially accesseldi€ 100p), because it will share the same base pointer. If the
arrays where each next address is relative to the previougccesses do not share the base pointer (FigureHoiyard

one. Sometimes, however, accesses are relative to the baggassifies them as different arrays.

pointer. These accesses may or may not be sequential. For Existing methods like those used in Polyglot [12], and
instance, randomly accessed arrays like hash tables fall inalso Rewards [31], only check whether single instructions
this category. in a loop access an area that can be mapped to a linear space

4.4.2 Accesses relative to the base



(stride = x + of fset). Therefore, they can handle only the observes a call to one of these functions, it knows the type
simplest of cases. They fail when the program: (1) accesse®f the arguments, so it can attach this label to the data-struc
arrays in multiple loops/functions, (2) accesses boundaryture. Howard propagates these type labels, e.g., when a la-
elements outside the loop, (3) has multiple instructioas th beled structure is copied. In addition, it also propagates t
access the same array within one loop (very common with type information to the pointers that point into the memory.
unrolled loops or loops containing conditional statements  In our experience, the recovery works only for a limited
likei f orswi tch), and (4) allocates the arrays on the stack set of all data structures, but some of these are important fo

or statically. These are all common cases. debugging and forensics. For instance, it may be intergstin
to see which data structures contain IP addresses. We have
4.4.3 Are both methods necessary? implemented type sinks fdri bc functions and for system

calls, as these are used by practically all applications. In
The two array detection methods Howard are comple-  general,Howard does not depend on type sinks, but it is
mentary. Both are necessary. The first will not detect ac- capable of using them when they are available. All results
cesses relative to the base pointer (like hash tables)ewhil in the remainder of this paper were obtained without turning
the second does not detect accesses where each next addresstype sinking at all.
is relative to the previous. In contrast, the combination of
our two techniques works quite well in practicéloward
is able to detect nested arrays, hash tables and many oth
complex cases.

& Applications

To demonstrate the usefulnessHdward, we describe
4.5 Final mapping two new applications: binary analysis with reconstructed
symbol tables, and retrofitting security to legacy binaries

Having detected arrays and the most appropriate basd'0t designed with security in mind.
pointers,Howard finally maps the analyzed memory into
meaningful data structures. For a memory chunk, the map-5.1 Binary analysis with reconstructed symbols
ping starts at a root pointer and reaches up to the most dis-
tant memory location still based (directly or indirectlyt) a To aid forensics and reverse engineeriHgward auto-
this root. For static memory, the mapping is performed matically generates new debug symbol tables for stripped
at the end of the program execution. Memory allocated pinaries. In this example, we focus primarily on the new

with mal | oc is mapped when it is released usifigee, techniques for detection of data structures. However, we
while local variables and function arguments on the stack 3o want to show how we complement Rewards’ method
are mapped when a function returns. of recognizing well-known functions (known &goe sink®

Mapping a memory region without arrays is straightfor- and propagating the types of their arguments [31]. For this
ward. Essentially, memory locations which share a basereason, we also add a minimal set of type sinks.
pointer form fields of a data structure rooted at this pointer  The symbol tablesioward generates are generic and we
and on the stack, memory locations rooted at the beginningcan yse them with any common UNIX tool. Of course, they
of a function frame represent local variables and function 4ye not entirely complete. For instance, we only have exact
arguments. _ _ . semantics for the subset of data structures that derive from

When a potential array is detected, we check if it matchestype sinks. Also, we cannot generate out of thin air the cor-
the data structure pattern derived from the base pointers. | rect names of fields and variables. Nevertheless, the recov-
not, the array hypothesis is discarded. E.g., if base point-ered symbol table allows us to analyze the data structures
presumed array has fields of 4 bytefward assumes the  gtherwise.
accesses are dug to func_t|ons likenset . The analysis Figure 7 shows a screenshot of a rgeb session with
may find r_nultmle interleaving arrays. If such arrays are Not reconstructed symbols. Suppose we have purchased a pro-
included in one another, we merge them. Otherwise, Wegram that crashes occasionally. We want to analyze the
examine the base pointers further to see if the arrays aréyrogram and perhaps reverse engineer parts of it. With-

nested. out Howard, common disassemblers (like thosegufb or
_ _ IDA Pro) help to analyze the instructions, but not the data
4.6 Partial recovery of semantics structures. In this example, we show that we can now an-

alyze the data also. For demonstration purposes, we use a
As mentioned eatrlier, type sinks are functions and sys- stripped version ofiget as our demo binary, and show that
tem calls with well-known prototypes. Whenevgoward we can analyze it with thgdb debugger.



To show both the unadorned data structure recomad;  try point into the code (the break point) would have been
recovery of semantics, this example uses a truly minimal setcompletely impossible. In contrast, withoward we can
of type sinks. Specifically, our type sinks consist (only) of progressively dig deeper and trivially find the connections
i net _addr () andget host bynane() . between the data structures.

The scenario is that we have witnessed a crash. Thus,
we start our analysis with an instruction prior to the crash 5.2  Protection against memory corruption
(0x805adb0) D and try to find information about the vari-
ables in the scope of the current functiam{{o scope Memory corruption errors such as buffer overflows are
@ and thenprint variables 3). Where the stripped  responsible for a large share of the remote attacks on the
binary normally does not haveny information about the  |nternet. An overflow occurs when a C program reads more
variables, we see thatoward reconstructed most of them bytes than fit in the buffer, so that important data in the

(structs, pointers, and strings) and even recovered par-memory above the buffer is overwritten. The overwrit-

tial semantics. For instance, we and pointers tet auct ten data can be either control data such as function point-
hostent and an net addr string". ers [36], or non-control data such as clearance levels [14].
We could print out the contents of thetruct Protection of legacy binaries is very hard. Existing so-

host ent , but really we are interested in the data structures |ytions tend to be too slow (like taint analysis [35]) or in-
pointed to by the various pointers — for instance the pointercomp|ete (ASLR [11], StackGuard [21], NX/DEPAN

to astruct identified bypoi nt er st ruct -1.0. Unfortu- support [25]). For instance, ASLR, StackGuard, and
nately, it currently has the value NULL, so there is nothing Nx/DEP/WaX offer no protection against attacks against
interesting to see and we have to wait until it changes. Wenon-control data. In addition, a recent report shows that
do this by setting a watch point on the poirier In our  poth DEP and ASLR in Windows third party applications
opinion, the ability to inspect data structures and setlvatc 5o typically either improperly implemented or completely
points clearly shows the usefulness of the data structurespyerlooked [40]. Finally, even if configured correctly, the
recovered bydoward. protection offered by ASLR is quite limited [41].

Once the pointer changes, and receives its new value To demonstrate the problem and our solution, we use an
0x80b2678, we can analyze the corresponding memory example based on a real vulnerabilityrinl | ht t pd [1]
area. We see that it points to a structure containing: anas shown in Figure (8.a). Given a CGl command, the Web
integer with value 3, a pointer to struct, a one-byte  server callr ocessCA Request with as arguments the
field, and a four-byte field5. If we follow the pointer,  message it received from the network and its size. The pro-
we see that it points to a struct with two fields, one of four gram copies the message in thgi Command buffer and
bytes and one of typen_addr -t (6. We can even examine  callsExecut eRequest to execute the command. As the
the value of the IP address and see that it corresponds t@opy does not check for bounds violations, the buffer may

74.125.77.147D. overflow and overwrite the heap.
Moreover, we see that oustruct is in an array

of size 3 by dividing the amount of memory allocated . .

. Protect M h look t patch -

(mal | oc_usabl e_si ze) by the size of an elemen®). rotection Many papers have looked at patching pro

Thus, we can make an educated guess that the integer valugrams (source or binaryafter a vulnerability was de-
' . 9 9 . tected [34], and recent work looked at extending the com-
of 3 we found earlier denotes the number of IP addresses in

piler framework to protect against new memory corruption
the array. .
: . attacks given the source [4]. So far, no one has shown how
To complete the admittedly simple example, we also

. one can really protect (i) existing binaries, (ii) in protion
ptrlnt (t)#t these ”_D aﬁdress% For reason? ?r: Space, V\lle . environments, (iii) against such attacks (on both contndl a
stop the scenario here. € purpose of the exampie 1S, qnrol data), and (ivpro-actively without access to
merely to show that weandebug and analyze stripped bi-

ies in th hen debuaai d zi vulnerabilities, source code, or even symbol tables. This
haries In the same way as when debugging and analyzing, o, s that all legacy binaries with unknown vulnerabsgitie
binaries with debugging symbols.

) . are left at the mercy of attackers. We now describe a promis-
We emphasize that by means of type sinks alone (e.qg., y P

. : ing new way to protect this important class of applications
using Rewards [31]), we would have obtained hardly any aggainst mer};‘norypcorruption P bp
data structures as almost all of them are internaiget . :

Eventuallv. the [P add d soth d Howard has no problem recovering buffers such as
ventually, the [ addresses are used, so they wou _a_ppeaEgi Conmand. However, since we use code coverage to
but nost ruct or array would have been found. In addition,

tina the IP add to other struct ¢ excavate the array, one might think thatward would dis-
connecting the [~ addresses 1o other structures from our eng., ey an array that is larger than 1024 bytes. After all,esinc
4Names are generated biloward.  Prefixes like fi el d_, code coverage can feed the function with arbitrarily long

poi nt er _are for convenience and are not important for this paper. messages, wouldnioward ‘discover’ an arbitrarily long




File Edit View Terminal Help

# file wget.gdb <—--- The binary is stripped
wget.gdb: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), dynamically linked (uses shared libs), for GNU/Linux 2.6.15,
# gdb -q wget.gdb

Reading symbols from /home/ Jfdynamit_instrumented_binaries/wget/wget.gdb. . .done.
(gdb) b *0x205adbo <---- Set breakpoint
reakpoint 1 at Ox80Sadbo

(gdb) run www.google.com

o Starting program: /home/ /dynamit_instrumented binaries/wget/wget.gdb www.google.com
1 [Thread debugging using libthread_db enabled]

--2010-08-09 16:24:00-- http://www.google.com/

o2 Breakpoint 1, Ox0805adbo in functiono ()
I:.(gdb) info scope functiono

Scope| for functiond: <---- Display function variables

Symbol variables_functiond is a|variable with complex or multiple locations (DWARFZ), length 152.

—+(gdb) |print variables functiong

$1 = {field 4 bytes_ 0 = 0, field_4 bytes_1 = 0, pointer_struct_hostent 0 = Oxbfffecg0, field _8_bytes_0 unused = 579558798248313200,
pointer_char 0 = 0x30bbl4 "\274\t", field in_addr_t 0 = -1073744880, pointer_struct 1 0 = 0x0, field_ 1 byte 0 unused = @ '\000',
field_1_byte 0 = 0 '\ooo', field 1 byte 1 = 0 '\oo0', field 8 bytes_ 1 unused = -4611705105257579776,
1netaddr_string 0 = 0xS80b0170 "www.google.com", field_ 4 bytes_2 = o}

(gdb) watech wariables_functiond.pointer_struct_1 0

Hardware watchpoint 2: variables function®.pointer struct 1 0

(gdb) <

Continuing.

Resolving www.google.com... Hardware watchpoint 2: wariables functionO.pointer_struct 1 0

®

®

®

old value = (struct struct_1 *} 0x0

New value = (struct struct_1 *) Ox80b2578

0x0805af5f in functiond ()

(gdb) print /x *variables_function®.pointer_struct 1 @ <---- Display a wget structure

) $2 = {field_4 bytes_0 = 0x3, pointer_struct_0 0 = 0x80b2690, field int 0 = Ox0, field_1_byte 0 = 0x0, field 4 bytes 1 = oOx0}
(gdb) print /x *variables_functionO.pointer_struct_l_O.pointer_struct 0.0 o __ _ Display the structure's fields

z”s\ $3 = {field 4 bytes 0 = 0x2, field in_addr_t 0 = 0x934d7d4a}

(gdb) print (char*) inet_ntoa(variables_function®.pointer_struct_l_0.polnter_struct_0_0.field_in_addr_t_0)
)__$4 = Oxb7fedBa0 "74.125.77.147"
'\ (gdb) print malloc_usable size(variables function@.pointer_struct 1 0.pointer_struct 0 0) ; sizeof (*variables functionO.pointer struct 1 0.

(8)| [pointer_struct 0_0)

-

|35 = 3

{gdb) print sx variables_functionO.pointer_struct_ 1_O.pointer_struct 0_0[1]

6 = {field 4 bytes 0 = 8x2, field in_addr_t © = Ox534d7d4a}

(gdb) print (char*) inet_ntoa(variables_functionO.pointer_struct_l_O.pointer_struct_0_0[1].field_in_addr_t_o)
$7 = Oxh7fedBan "74.125.77.99"

(gdb) print /x variables function®.pointer_struct 1 O.pointer_struct 0 0[2]

8 = {field 4 bytes 0 = 0x2, field in_addr_t © = ox6B4d7d4a}

(gdb) print (char*) inet_ntoa(variables_function@.pointer_struct_l_0.pointer_struct_0_0[2].field in_addr_t o)
$9 = 0xh7fedBa0 "74.125.77.104"

| | (gdb) []

?|

[<]

Figure 7. Analysis and disassembly with recovered symbols



(a) (b)

oi d # code before dereference
ProcessCd Request (char *nsg,int sz) #o

| der ef erence_check_0x80485d4:
=0 # %ax may point to data of different
) # color than originally assigned

int i
char* cgi Command = nal | oc(1024);
# save registers
while (i <sz) { %ecx

push
[cgi Command[i] = megli]; | ‘ push %edx
I+ push %ax #key: push addr %ax points to

call get_data_color # color of protected
# is placed in %al

# the color of %ax (found at index 1 in

# reg_colors) has to natch color of data

|l ea reg_col ors, %bx

cmpb %al, 1(%ebx)

}

Execut eRequest (cgi Conmand) ;
free (cgi Conmand);

All accesses to the buffer cgiCommand are je _dereference_check_ok_0x80485d4
protected by the code on the right.The pointer
is initially colored at the malloc.The code on

the right shows what happens when the buffel
is accessed. | der ef erence_check_ok_0x80485d4:

ﬁprint alert and exit

#rel oad registers
In summary: the framework looks up the color

e . pop %eax
of the buffer and compares it with the pointer’s pop Y%edx
color. If the colors match, it will perfrom the pop %ecx

dereference. If not, it raises an alert (and in this

case exits). # the actual dereference we instrunent

. L . . nmov %l , (%eax)
All instrumentation is weaved into the original

binary, so all instructions run at native speed. # code after dereference

#o...

Figure 8. (a) Buffer overflow vulnerability in a simplified Web server, (b) Instemtation

buffer? Fortunately, the answer is no and the reason is thaing to memory of the right coloB®. Fourth, because we do
the bytes just beyond the buffer (in this case memory man-not wish to maintain also a large memory map of colors for
agement meta data) are accessed and classified differenthall pointers, we ensure that only pointers in registers have
As a resultHoward sees two conflicting classifications and a color. Whenever a pointer is stored to memory, we check
picks the safest one, ending the buffer at the right boundary whether it is still pointing to the right area. If so, everiyitp

) is fine and when the pointer is reloaded to a register, we give
In our approach, we protect all buffers which were clas- j; the color of the byte to which it is pointing. If, however,

sified as arrays, ar_1d all buffers which were foIIowed_by UN- the pointer does not point to an area of the right color, we
used memory regions. The latter ones might be either ar-qypicitly tag the pointer with a single bit to indicate that

rays or structures. Sinogoward not always has enough  heeds to obtain its color from a table. As this situation is
information to choose the correct data structure (alsa refe (516 the overhead is minimal.

to “missed short arrays” in Section 8), to err on the safe side

. . To add the instrumentation, we rewrite the binary usin
we have decided to protect these memory regions as well. y 9

rewriting techniques similar to Dynamos [32]. We empha-
After identifying all potentially vulnerable data struc- size againtha_t the instrumentation is applied only to éxact
tures (mostly arrays), we harden the binary as follows tFirs those.mstructlons that peed to be checked. The rest of the
we give each vulnerable data structure a unique color. Forc0de is not touched. Figure (8.b) shows how we hardened
the rest of memory the color is set to 0. The colors are keptthe memory dereference in the web server.
in a memory map. Next, when we initialize a pointer to, say, ~ T0 test the practicality of our approach, we applied the
buffer B, we give the pointef3’s color. The initialization =~ Howard protection to the main array of ght t pd, the pop-
varies, depending on the type of memory. For global data, ular high-performance web server that, at the time of writ-
this happens when the program starts, for stack variablesng, is used by such popular sites as YouTube, SourceForge,

when the function is called, and for heap data at the time of Wikimedia, Meebo, and ThePirateBay. The protected ar-
the allocation. ray is used to store strings, and in our experiment setting

Third, we inStrument_ those (and only those} !nStr_UCtian 5S0 it is fine if the pointer points beyond the buffer, as londf &snot
that dereference the pointer to check whether it is stithpoi  dereferenced.



accounts for 80% of the whole heap memory usage. The
runtime overhead of the current implementation is almost a
factor of 2. Although the overhead of instrumentation is not
negligible, we believe that the approach is practical. tFirs
there are many ways in which we can optimize the instru-
mentation. Second, there are many legacy applications that
are not extremely time critical, but that should not be com-
promised.

Discussion. Currently, while the instrumentation frame-
work works, itis still an early prototype. For instance, whe
instrumenting a binary, some steps are still manual. This
will be remedied shortly. In addition, we have not looked
at all performance optimization yet. Finally, while we have
taken care to avoid possible false positives, more extensiv
evaluation is needed across a wide range of applications.
Nevertheless, the important message, in our opinion, ts tha
with Howard we have a chance to protect arbitrary legacy C
applications against the most common form of exploit with-
out any access to source code or even symbol table, and
without knowing in advance about the presence of vulnera-
bilities in the code. For instance, the Web server of Figure 8
now raises an alert whenever it reads too many bytes in the
cgi Commrand buffer.

6 Comments and limitations

Obviously, Howard is not flawless. In this section, we
discuss some generic limitations we have identified.

Limitations in array detection We discuss both the lim-
itations of our array detection techniques and their impact
on our applications — especially on our second application
which uses the data structures to protect legacy binaries. |
is crucial that possible misclassifications do not causefal
positives.

e At least four accessed.0 make array detection more
accurateHoward will not recognize an array if fewer
than four of its elements are accessed in a loop. In
that case, it will be classified as a structure. This mis-
classification can only cause false negatives, but never
false positives. Indeed, if an array remains undetected,
Howard does not try to protect instructions accessing
it.

e Merging with unused byte§Ve merge detected arrays
with any unused bytes that follow the array. Doing so
prevents identification of buffers that are too small (and
thus false positives in the case of protection against
memory corruption). In general, théoward protec-
tion scheme, was designed to err on the safe side. Ob-
serve that even if we would add unused bytes that do

not belong to the same buffer, we still protect the next
usedfield or variable from buffer overflows.

e Incorrect merges.If a structure consists of one field
followed by an array, and the field and array are ac-
cessed in sequence, it is impossible to classify it cor-
rectly solely based on memory access patterns. As
Howard always extends array to include the first ele-
ment unless it finds evidence that it does not match
(e.g., if because size or type are different), it could lead
to overestimation of the array length. Again, this can
never cause false positives.

e Separate last element accesskesnay happen that all
but the last elements of an array forratain, while the
last element islwaysaccessed separately, e.g., when
a string is first copied to a destination buffer, and then
extended withEQOL or NULL. Howard misclassifies the
memory as a structure containing an array and a sepa-
rate field. Even though the last element is not attached
to the array, this does not cause false positives for our
application. Indeed, if the program never exploits the
connection between the last element and the remain-
ing part of the array, it is not important for us to join
them either. Also, if the size of the array varies across
multiple runs of the prograntjoward prefers to err on
the safe side, merges the elements, and reports accu-
rate results. In general, everHbward cannot classify
an array or structure correctly in one particular loop
or function, it may still get it right eventually. Often
data structures are accessed in more than one function,
yielding multiple loops to analyze the layout.

Other limitations

e Howard cannot recognize nestextruct s if the in-
nerstruct is never accessed separately. In that case,
Howard returns a single large structure. As the result
is equivalent, we do not consider this a problem.

e Unions might exhibit more than one memory access
pattern. As a resulioward would report a data struc-
ture being amerge (or intersection of the multiple
structures included in the uniordoward might cer-
tainly report an incorrect (more detailed) interpretation
of fields, but it does not lead to false positives.

e Howard gets confused by certain custom memory al-
locators. Specifically, it can handle slab-like alloca-
tors, but a generic, application-specific memory allo-
cator (such as that of Apache) leads to misclassifica-
tions. It stems from the fact that a memory region serv-
ing the allocator exhibits mixed access patterns inher-
ited from various different structures/arrays for which
it was used. As a resuljoward would classify such



Loop code:

buffer as either an array of (perhaps) 4-byte fields or a _ _ _ _ _
for(i =0; i <64; i++) arrl[i] =1i;

highly nested structure.

e Howard does not analyze local variables of functions And two possible executions:
addr = arrl; addr = arr1i;

reached using punp rather than aal | . for(i =0; i <64 i+9){ for(i =0; i < 16; i+ {
xaddr = i; xaddr = i<<2;
. . L addr += 1; *(addr + 1) = @<<2+1;
7 Code transformation: compiler optimiza- } :Eggg; ' g; DS
tion and obfuscation techniques addr += 4; ’

}

In production code, compilers apply optimizations to
improve runtime performance. Such optimizations may which the loop can be executed: the non-transformed one
change the code substantially. Likewise, obfuscationstool o the left hand side, and the unrolled one on the right hand
change the source code or binary to reduce the ability toun-  gjge.
derstand or reverse engineer the program. In this section,
we introduce popular optimizations and obfuscation tech-
nigques and discuss how they influent@vard’s data struc- ) )
ture detection results. We treat compiler optimizations in gnd the number of jumps, (2)op peeling where a loop

Section 7.1 and obfuscation techniques in Section 7.2. InS Pe€led, a small number of iterations are removed from
both cases, we limit ourselves to the techniques that are rel th€ Peginning or end of the loop and executed separately to

evant and that may affect data structure detection. remove dependencies created by the first of last few loop
iterations, (3)oop blocking where a loop is reorganized to

iterate over blocks of data sized to fit in the cache.
As described in Section 4.4joward recovers arrays
when the program accesses them in loops. To increase the
daccuracy of the analysisioward’s algorithm allows for ar-
rays accessed in multiple loops, and checks for array el-
ements accessed before or after the loop body. Basically,
when a transformed loop accesses an array, all its elements
areclassified together
However, loop transformations may change not only the
7.1.1 Data layout optimizations layout and number of loops, but also the memory access
patterns. As an example, Figure 9 presents a simple loop ac-
cessing an array, and two possible ways in which this loop
can be executed. Refer to Figure 10 to observe arayl
access patterns executions. We can see that depending on

In generalHoward detects data structures at runtime, so the execution, the array is either classified as an array of

the analysis results correspond to the optimized code anosingle fields (as desired) or as an array of 4-field structures

data—which may be different from what is specified in the Even tho.ughar r1is possibly misclassifigd here, it might
source. This is known as WYSINWYX (What You See Is be used in other ways somewhere else in the program, and

Not What You eXecute) [9] and while it complicates re- we might eventue_llly getitright. In a_II similar casemward_ )
verse engineering (for instance, some data structures ma)?annot d(.) anythmg ?bOUt not entirely accurate classifica-
be reordered or transformed), analyzing the code thatreall lons, as its analysis is based solely on memory access pat-
executes is of course 'the right thing’. Without it, we would terns

not be able to protect buffers from overflows, or perform

proper forensics. 7.1.3 Optimizations affecting function frame

Figure 9. An example loop and two possible ways in

7.1 Compiler optimizations

Howard detects data structures g c-generateck86 C
binaries. Even though our techniques were not designe
with any specific compiler in mind and should work with
other binaries also, we conducted all our experiments on
gcc- 4. 4 binaries. So we focus our discussionguc.

Data layout optimizations [29, 28] adapt the layout of a
data-structure to its access patterns in order to better uti
lize the cache by increasing spatial locality. They include
structure splitting and field reordering transformations.

There are numerous compiler optimization which affect the
way we perceive a function’s frame. First, functions can
Loop transformations [3, 6] reduce loop overhead, increasebe inlined, what means that they are integrated into their
instruction parallelism, and improve register, data camhe callers. In this case the small inlined function is not alle
TLB locality. Popular transformations include: (bpp un- separately, but its function frame extends the caller’s. one
rolling, where the body of a loop is replicated multiple times Second, (some of) the input function arguments might be
in order to decrease both the number of loop condition testspassed through the registers and not through the stack, Also

7.1.2 Loop optimizations



N WW‘(‘W with ar r 2’s elements. Here, we perhaps expeotvard to
report one array of NL+N2] elements.
Since Howard analyzes memory access patterns only,
m it cannot recognize that certain arrays are usedinmilar
SlNEEEEEEEEEEEEEE ways bysimilar functions, and containingimilar elements.
Thus, it cannot say that some arrays might share a higher
level data typeHoward concerns itself with low level data
structures only, and limits itself to recognizing sizes bae

sic types of data structures. Understanding contents and us
age scenarios is part of our future work.

Figure 10. Memory access patterns realized in two ex-
ecutions of the loop in Figure 9. The top one represents
the non-transformed one, and the bottom one - the unrolled
one. As in the other figures, arrows represent base pointers
as determined by the loop.

7.2.2 Obfuscating variables

gcc might analyse the program to determine when values There is a lot of work on hidingaluesof sensitive variables

passed to functions are constants. These are optimized adrom static and dynamic analysis [17, 47]. For example, in-

cordingly. stead of using a variable, one can use a piece of code that
Howard is expected to reflect functions in the way they generates the value dynamically. Also, like arrays, véemb

appear in the binary. In the case of inlined functions we get may be split or merged. None of our test applications con-

just one extended function frame. Likewise, sitttmvard tain such obfuscation, so we left this for future work.

analyzes memory access patterns only, it cannot spot func-

tion parameters passed through the registers or precod1pute7_2_3 Anti-dynamic analysis techniques

by the compiler. As this inaccuracy does not affect our ap-

plications, we did not worry about it. Howard observes the behavior of a program in runtime, and
so it is crucial that the program does not refuse to run in
7.2 Obfuscation techniques the instrumented processor emulator. However, there exist

techniques that could be used by programs running in vir-

Code obfuscation techniques aim to reduce the ability to tualized environments to determine that they are running in
understand or reverse engineer the program. Data transfora virtual machine rather than on native hardware [37, 27].
mations [19] that obscure data structures used in the sourc&Vhen this happensjoward cannot perform its analysis.
application are the most relevant koward, and we fo-
cus our discussion on them. We also briefly mention anti- 8  Evaluation
dynamic analysis techniques (Section 7.2.3).

_ Howard can analyze any application on the Linux
7.2.1 Obfuscating arrays guest on our (QEMU-based) emulator. For instance, we

Numerous transformations can be devised for obscuring op-Successfully applieddoward to games likegl i nes and

erations performed on arrays [16, 46, 26]. Popular tech-9n°Metri's, but also to complex binaries Iike6 the Linux
niques include: (Lprray spliting where an array is split 10aderl d-2.9.so, and huge ones liképache®. How-

into several subarrays, (Zrray merging where two or ever, for good results we need code coverage and for code
more arrays are merged into one arraya@hy foldingand ~ COverage we currently depend on what is supported by

flattening where the number of dimensions is increased or KLEE [13] an-d existing test .suites. o
decreased, respectively. Our experimental setup is shown in Figure 1. We con-

As before,Howard is expected to reflect arrays in the duct the code coverage runs offline, using KLEE on LLVM

way they appear and are accessed in the binary. In the cas¥ersion 2.6 with home-grown modifications to handle net-
of split, folded or flattened arraysoward is supposed to re- working. All applications run on a Linux-2.6.31-19 kernel.

port the new transformed data structures. When two or more/Ve then usekl ee-repl ay to replay the application on

arrays are merged to form a new array, the results of thelOP_Of ourHoward analyzer with the inputs generated by
analysis greatly depend on the merging method. For exam-KLEE. If our coverage is low, we use normal test suites for
ple, one could combine arrags r 1[ N1] andar r 2[ N2] the applications.

in such a way that the new array r 3 containsN1 elements Starting out with small applications (fortune), we
of ar r 1 followed by N2 elements ofr r 2. In this case, worked towards progressively larger applications. In the

it is very probable thakoward reportsar r 3 as a structure plots below, we include results for programs of several tens

containing MO arrays. an1- and.aer'element long. An- 6244.000 lines of code (LoC), as reported by David Wheelers
other merging technique could interleaaer 1's elements sl occount (ww. dwheel er. coni sl occount /).




of thousands LoC, including theget download program tically all arrays andst r uct s the lengths were identified
and thel i ghtt pd high-performance web server. Table 1 correctly.
shows the applications and the coverage we obtained with The stack has more unused memory than the heap. This
KLEE and the test suites. We also appligelvard to utili- is expected. Whenever a function is called, the whole frame
ties in CoreUtils, but these tend to be so small (a few hun-is allocated on the stack, regardless of the execution path
dred lines, typically) that they are not representativeeal r  taken in the function’s code. Heap memory is usually allo-
applications, and we do not discuss them here. cated on demand. Much of the unused bytes are due to the
limited coverage. As we never ran KLEE for a longer than

Results To verify Howard’s accuracy, we compare the re- @ few hours, it may be that by running it longeve obtain
sults to the actual data structures in the programs. ThisPetter coverage.

is not entirely trivial. We cannot compare to the original The stack also counts more structures that are flattened.
source code since aggressive compiler optimizations mayAgain, this is not surprising. As explained in Section 3,
change the binary significantly (“what you see is not what Structure field addresses may be calculated relative to the
you execute” [9]). Thus, all the results presented in this Peginning of the function frame. In that caséward has
section were obtained for binaries for which we could also N means of classifying the region as a structure. On the
generate symbol tables to compare our results with. Thisheap this isless common. Indeed, if an application allecate

way we were able to get ground truth for real world appli- memory for a structure, it refers to the structure’s fields
cations. from the base of the structure, i.e., the beginning of the al-

We will start with a few quick observations. First, located region. Howevetioward may still misclassify in
Howard cannot discover variables that always remain un- the case of a nested structure. This happens for instance in
used, but this probably should not count as a ‘missed’ dataf or t une, where a 88-byté| LEDESC structure contains
structure. Second, all these results were obtained solely2 Nested 12-byt8TRFI LE structure.
with Howard's ‘core’ data structure excavation techniques. ~ The main source afissedare data structures occasion-
In other words, we turned offll type sinking for these tests.  ally classified as arrays of 4-byte fields. Assume that an

Figure 11 presents our results in terms of accuracy for @Pplication uses a simple structure with 4-byte fields based
both the stack and the heap. The accuracy is calculated bot/@t the beginning of the structure (i.e., no inner strucfures
for the number of variables, and for the total number of |f none of the fields is 1-byte long, nor is a pointer, while a
allocated bytes. In the case of stack memory we evaluated™®mset function is used for the structure initialization, we
the accuracy ofHoward analysis for all functions used have no means for discarding the array hypothesis.
during our experiments. Thus we did not count the stack As the vast majority okt ructs and arrays reside on
variables used by never invoked functions. In the case ofthe heap, we zoom in on these results for more details.

heap, we simply considered all allocated memory regions.Figure 12 breaks down the overall results to show how
The p|ots showHoward results in five Categories: well Howard discovers individual fields and different typeS

of arrays. The two plots correspond to structures that are
separately allocatean the heap and on arrays (possibly
e OK: Howard identified the entire data structure cor- containing structures). We label the results as follows:
rectly (i.e., a correctly identified structure field is not

counted separately).
e Structures

e Flattened: fields of a nested structure are counted as a
normal field of the outer structure. On the stack these OK: fields correctly identified.
are usually structures accessed via EBP, as explained — Missed fields incorrectly identified.
in Section 3.

Unused fields missed because the program did
e Missed Howard misclassified the data structure. not use them.

Flattened fields in nested structures that
Howard placed at the wrong nesting level.

e Unused single fields, variables, or entire structures
that were never accessed during our tests.

e Unused array: this is a separate category that counts ~ ° Arrays

all arrays not recognized because there were insuffi- — OK: arrays correctly/incorrectly identified.

cient accesses to the array. — Missed arrays correctly/incorrectly identified.

_ The general conclusion is that practically all memory is 7oy running it better. Driving KLEE down the right executioath is
either detected correctly or unused. Moreover, for prac- not always trivial.



Prog LoC Size Funcs% Vars% How tested? KLEE%
wget 46K | 200 KB | 298/576 (51%)| 1620/2905 (56%)| KLEE + testsuite| 24%
fortune | 2K 15KB | 20/28 (71%) 87/113 (77%) test suite N/A
grep 24K | 100 KB | 89/179 (50%) | 609/1082 (56%) KLEE 46%
gzip 21K | 40KB | 74/105(70%) | 352/436 (81%) KLEE 54%
lighttpd | 21K | 130 KB | 199/360 (55%)| 883/1418 (62%) test suite N/A

Table 1. Applications analyzed withloward. LoC indicates the lines of code accordingstiooccount . Size is the approximate
size of the text segment. Func% is the fraction of functions that the testsisse (KLEE or test suite). Vars% is the fraction of
variables used in the tests (KLEE or test suites), and KLEE% is the cavefteged by KLEE (if any).
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Figure 11. The accuracy of the analysis per application.
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— Missed short arrays missed because they were without access to source code or symbol tables by observing
accessed fewer than 4 times. how program access memory during execution. We have
shown that the extracted data structures can be used for an-
alyzing and reverse engineering of binaries that prevjousl
] ) - could not be analyzed before, and for protecting legacy bi-
— Flattened fields ofst ruct s in arrays classified  paries against memory corruption attacks. As until now data
as separate elements. structure extraction for C binaries was not possible, we ex-
pectHoward to be valuable for the fields of debugging, re-
verse engineering, and security.

— Unused arrays missed byoward because they
were not used at all.

If an array containsstructs and any field of any
struct is missed, we count it as a missed array. A flattened
array means at least one of ther uct s was flattened. In ) )
other words, we analyzet r uct s that were allocated indi- ~ Future work  Our focus throughout this project was on
vidually separate fromst ruct s in arrays. The reason for detecting low level data strpctures in stripped binaries. W
doing so is that otherwise the arrays would completely dom- have demonstrated that withoward we have a chance to
inate the analysis oft r uct s. For instance, if all fields in ~ Protect arbitrary legacg binary against the most common

an array of 1000 structures were classified correctly, this form of exploit. We plan to make our current instrumenta-
would artificially inflate the number of correctly identified tion framework fully automated, and to further evaluate our

fields. approach.
In the plots in Figure 12 we see that provided they are ~ Future research also addresses the issue of lifting the

used at allHoward mostly detects fields and structures quite current low level analysis to higher level data structures.
accurately. Most of the misclassifications are also minor. We intend to observe connections between structures, and

For instance, the flattened structuref i t une consists of ~ Pased on that information reason about pointer structures

an 88-byteFl LEDESC structure that contains a nested 24- like linked lists, trees and hash tables.
byte STRFI LE structure, where the inner structure is never

used separately. Examples of the arrays missedén are 10 Acknowledgments
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