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Executive Summary: 
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components necessary to perform real-time malicious code identification. Furthermore, we 
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companies, search providers, research institutions, etc. to provide guidelines about the 
context and direction that the i-Code project should follow. 
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1 Introduction 

As creation of malicious software continues to grow at alarming rates, we as security 
researchers are forced to develop new ways to counter this problem. Since we are now 
dealing with a threat that is growing in both scale and complexity, as well as in speed 
of infection new techniques are required. Real-time malicious code identification is 
one of the methods that we believe will play a significant role in countering this 
threat. 

In this document we provide an overview of the state of the art real-time malicious 
code identification area. Specifically we discuss background work done in the area of 
high-speed pattern recognition, signature generation and malware analysis. These 
three areas form the backbone of real-time malware detection. We used this 
bibliographical survey as a guideline for the direction we should take towards 
developing a real-time malicious code identification framework. 

To further guide our compilation of the set of requirements necessary, we conducted 
interviews with experts in the field of network security. We selected those experts 
from a large cross-section of industry and also academia. Specifically from, ISPs, 
NRENs, security companies, search providers, CERTs, research institutions, etc. 

We conclude this document by laying out the axes along which we plan to carry out 
the work necessary to build a real-time malicious code identification framework. 
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2 Background 

The goal of Internet attacks carried out by worms, viruses and other malware, is to 
subvert the protection of the target system and establish complete control. The way 
these attacks are usually carried out are by targeting a specific vulnerable application 
on the victim that enables the attacker to transfer the execution of the application to 
attacker-crafted code. This can be accomplished in a variety of ways, including, buffer 
and integer overflows, format string attacks, and others. These attacks aim to hijack 
the instruction pointer of the vulnerable program and then execute arbitrary code. 
Often the code executed is a command shell, and that is why the attack vector, that is 
the data sent to carry out the attack, is called a shellcode. Once a command shell, or 
other attacker-controlled code, starts executing, it does so with the permissions and 
privileges of the compromised application. Identifying malware at high network 
speed, that is, detecting the malware presence, fingerprinting it, classifying it and 
producing a notification is of paramount importance. We now look into the  state-of-
the-art in malware identification. 

 

2.1 Signature Generation 

To perform any kind of high-speed malware identification it is necessary to have 
some sort of signatures in order to identify the malware. Detecting zero-day 
polymorphic malware can be extremely difficult since no such signatures exist. The 
first attempts to detect such malware focused on detecting a sled component in the 
code of the attack vector [31, 32].  Unfortunately such sleds are not always present, as 
one can craft the attack to not require a sled, and most will know Internet worms did 
not employ one. Systems like Buttercup [33] try to identify polymorphic buffer 
overflows by detecting the ranges of possible return addresses for existing buffer 
overflow vulnerabilities. This approach is not particularly effective against more 
sophisticated attacks. 
 
Other works try to automatically generate signature for unknown malware by looking 
for common byte sequences across different malware instances. These methods are 
capable of producing some sort of zero-day malware detection signatures by 
correlating data payloads from suspicious traffic flows [34, 35, 36]. Such approaches 
have a tendency to create a lot of false positives and cannot counter attack by using 
polymorphic malware, as they do not contain sufficiently long common byte 
sequences [37]. 
 
Systems such as [38, 39, 40, 41] create signatures that can match polymorphic 
malware. Detecting common invariants that exist in different malware, like return 
addresses, protocol framing, etc. does this. The generated signatures can be 
expressed as regular expressions or statistical distributions, and be used for high-
speed detection by systems as discussed in the previous subsection. However, more 
aggressively polymorphic malware render such systems largely ineffective. The 
problem is that for such systems to work they require a lot of malware instances 
before classifying something as an attack. This means that targeted attacks may pass 
unnoticed [47]. 
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2.2 High-speed Pattern Recognition 

Pattern matching is the most critical operation that affects the performance of 
network intrusion detection systems. These systems can be used to identify malware 
as they propagate through the network. Pattern matching algorithms can be classified 
into single- and multi-pattern algorithms. 
In single pattern matching algorithms, each pattern is searched for in a given text 
individually. This means that if we have k patterns to be searched, the algorithm must 
be repeated k times. Knuth-Morris-Pratt [18] and Boyer-Moore [6] are some of the 
most widely used single pattern matching algorithms. Knuth- Morris-Pratt is able to 
skip characters when a mismatch occurs in the comparison phase using a partial-
match table for each pattern. Each table is built by preprocessing every pattern 
separately. Boyer-Moore is the most widely used single-pattern algorithm. Its 
execution time can be sub-linear if the suffix of the string to be searched for appears 
infrequently in the input stream, due to the skipping heuristics that it uses. 
Multi-pattern string matching algorithms, search for a set of patterns in a body of text 
simultaneously. This is achieved by preprocessing the set of patterns and building an 
automaton that will be used in the matching phase to scan the text. The automaton 
can be thought of as a state machine that is represented as a trie, a table or a 
combination of the two. Each character of the text will be searched only once. Multi-
pattern matching scales much better than algorithms that search for each pattern 
individually. Multi-pattern string matching algorithms include Aho-Corasick [1], Wu-
Manber [2] and Commentz-Walter [3]. 
Most Network Intrusion Detection Systems (NIDS) use finite automata and regular 
expressions [4,5,6] to match patterns. Coit et al. [7] improved the performance of 
Snort by combining the Aho-Corasick keyword trie with the skipping feature of the 
Boyer-Moore algorithm. Fisk and Vaghese enhance the Boyer-Moore-Horspool 
algorithm to simultaneously match a set of rules. The new algorithm, called Set-wise 
Boyer-Moore-Horspool [8], was shown to be faster than both Aho-Corasick and 
Boyer-Moore for sets with less than 100 patterns. Tuck et al. [9] optimized the Aho-
Corasick algorithm by applying bitmap node and path compression. 
Snort from version 2.6 and onwards uses only flavors of the Aho-Corasick for exact-
match pattern detection. Specifically, it contains a variety of implementations that are 
differentiated by the type of the finite automaton they use (NFA or DFA), and the 
storage format they use to keep it in memory (full, sparse, banded, trie, etc.). It 
should be mentioned, however, that the best performance is achieved with the full 
version that uses a deterministic finite automaton (DFA) at the cost of high memory 
utilization [10]. 
To speed-up the inspection process, many IDS implementations are based on 
specialized hardware. By using content addressable memory (CAM), which is suitable 
to perform parallel comparison for its contents against the input value, they are very 
well suited for use in intrusion detection systems [11, 12]. However, they have a high 
cost per bit. 
Many reconfigurable architectures have been implemented for intrusion detection. 
Most approaches involve building an automaton for a string to be searched, 
generating a specialized hardware circuit using gates and flip-flops for the 
automaton, and then instantiating multiple such automata in the reconfigurable chip 
to search the streaming data in parallel. However, the circuit implemented on the 
FPGA to perform the string matching is designed based on the underlying hardware 
architecture to adjust to a given specific rule set. To adjust to a new rule set, one must 
program a new circuit (usually in a hardware description language), which is then 
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compiled down through the use of CAD tools. Any changes in the rule set require the 
recompilation, regeneration of the automaton, re-synthesis, replacement and re- 
routing of the circuits, which is a time consuming and difficult procedure. 
Sidhu and Prasanna implemented a regular expression matching architecture for 
FPGAs [13]. Baker et al. also investigated efficient pattern matching as a signature  
based method [14]. In [15], the authors used hardware bloom filters to match 
multiple patterns against network packets at constant time. Attig et al. proposed a 
framework for packet header processing in combination with payload content 
scanning on FPGAs [16]. 
Several approaches attempt to reduce the amount of memory needed to economically 
fit in on-chip memory [17,18,19]. However, the on-chip hardware resource 
consumption grows linearly with the number of characters to be searched. In [20], 
the authors convert a string set into many tiny state machines, each of which searches 
for a portion of the strings and a portion of the bits of each string. 
Other approaches involve the cooperation with network processors in order to 
pipeline the processing stages assigned to each hardware resource [21], as well as the 
entire implementation of an IDS on a network processor [22, 23]. Computer clusters 
have also been proposed to offload the workload of a single computer [24, 25, 26, 27]. 
The cost however remains high, since it requires multiple processors, a distribution 
network, and a clustered management system. 
On the contrary, modern GPUs have low design cost while their increased 
programmability makes them more flexible than ASICs. Most graphic cards 
manufacturers provide a high-level APIs that offer high programming capabilities 
and further ensure forward compatibility for future releases, in contrast with most 
FPGA implementations that are based on the underlying hardware architecture and 
need to be reconfigured whenever a change occurs in the rule set. Furthermore, their 
low design cost, the highly parallel computation and the potential that they are 
usually underutilized, especially in hosts used for intrusion detection purposes, 
makes them suitable for use as an extra low-cost coprocessor for time-consuming 
problems, like pattern matching. 
PixelSnort [28] is a port of the Snort IDS that offloads packet matching to an NVIDIA 
6800GT. The GPU programming was complicated, since the 6800GT did not support 
a general-purpose programming model for GPUs (as the G80 used in our work). The 
system encodes Snort rules and packets to textures and performs the string searching 
using the KMP algorithm on the 16 fragment shaders in parallel. However, PixelSnort 
does not achieve any speed-up under normal-load conditions. Furthermore, 
PixelSnort does not have any multi-pattern matching algorithms ported to GPU. This 
is a serious limitation since multi-pattern matching algorithms are the default for 
Snort. In a more recent work, Marziale et al. [29] evaluated the effectiveness of 
offloading the processing of a file-carving tool to the GPU. The system was 
implemented on the G80 architecture and the results showed that GPU support can 
substantially increase the performance of digital forensics software that relies on 
binary string search. Gnort [30] is a high-performance GPU based implementation of 
the Snort IDS. Performance results showed that Gnort can scale to the gigabits per 
second when performing intrusion detection. 
 
 

2.3 Malware Analysis 

When a malware is discovered it must be analyzed to determine the kind of threat it 
poses to the network. Since malware generation by the attackers if often automatic, 
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such samples grow at very high rates and spread on the Internet in high numbers [38, 
45, 46]. To counter this analysis must be automatic. Traditional approaches, statically 
analyze the code of the malware. More advanced approaches take a different route. 
Behavioral analysis executes malware samples for preset time duration inside an 
emulated environment. During that time, the malware is being monitored closely. 
The observation assists in automatically generating a report on the behavior of the 
malware, which can be used in further analysis. The difference with the traditional 
methods is that it is a black-box process in which one does not look inside the 
malware, but instead it looks at the interactions it has with the environment. This 
simplifies things greatly, since as we have mentioned before most of the malware 
today is polymorphic and metamorphic. Simply executing it, deals with the process of 
decryption, obfuscation and packing, as these steps happen on their own. On the 
down side, each execution can only monitor one execution path of the malware, so 
reports may be incomplete. To address this limitation Moser et al. [42] proposed a 
method for multiple execution path analysis. 
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3 Interviews with the Experts 

In order to have a more complete and clear view of the issues involved in real-time 
malicious code identification, we conducted a series of interviews with experts in the 
field of network security. To get a well-rounded view, we selected those experts from 
a large cross-section of industry and also academia. Specifically from, ISPs, NRENs, 
security companies, search providers, CERTs, research institutions, etc.  

 

To conduct these interviews we compiled, but were not limited to, a set of discussion 
points, which we used as guidelines. Here we summarize the core list of discussion 
points: 

1. Do you do protection on the net or on the host? 

2. What sort of tools or protection do you use? Specifically, 
do you use any of the following: IDS, IPS, honeypots, 
firewalls, botnet detectors, extrusion detection tools, 
DDoS protection/detection tools, and/or other forensics 
tools?) 

3. What sort of resources do you protect and with what tools 
(see above)? 

4. What sort of links do you protect and with what tools? 
(Link type, capacity, etc.) 

5. Who are you trying to protect and from whom? 

6. Do you look at the entire traffic? Do you do sampling? Do 
you look at specific flows? Do you do header-only? 

7. What sort of network speeds would real-time detection make 
sense today? 

8. What about in the next 3 years? 

9. Do you do deep packet inspection? 

10. What percentage of traffic is encrypted? 

11. What types of things should we be looking for? 
Shellcode, botnet communications or any other malware? 
Any suggestions? 

12. What sort of information would be useful to present 
to the "user" of such a system? Statistics? Attacks as 
they happen? Something else? 

 

As one can see from the above discussion points, what we tried to accomplish is first 
determine the importance of the network versus the end host. Then we drilled down 
on specific types of tools and resources that need protection. The next set of points try 
to determine the rates that any real-time malware identification system must cope 
with. Finally, we focus on types of attacks and delivery methods as well as what must 
be presented to the “end user” of such a system. 
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3.1 Network and Host 

Almost all interviewees reported that protection is taking place at both the network 
and the host. There were however a couple of exceptions. Those were from the 
experts that worked for network providers. This was expected, as the business model 
of network providers is to provide connectivity. One comment was “… as an ISP 
doesn’t have any firewall functionality that is offered as a service. We do have an 
anti-DDoS service installed at the core of our network which can mitigate some 
attacks.” 

 

3.2 Tools and Resources 

With respect to the tools used, the experts reported that they use a variety of 
solutions. These solutions cover the entirety of security tool-types, both commercial 
and public, open source. It is clear that the development of  a real-time malicious 
code identification framework would fit well with the tools already used out there in 
practice. Security tools such as IDS, IPS and antivirus being the most prominent 
examples. 

One expert noted: “However, we also exploit these tools to collect information about 
compromised hosts to support the incident handling service of our CERT.” The work 
proposed here would assist them, and others like them, in real-time reporting and 
handling of incidents. 

All the experts noted that they use those security tools to protect their vulnerable 
resources on the network and on the end hosts. 

3.3 Rate Requirements 

In our interviews, we wanted to get a feel of what data rates were typical used in the 
experts’ organizations. The respondents placed traffic in the order of a few to ten 
gigabits per second. The responses were split, however when asked about in how 
much detail they examined the traffic. The more security conscious responded that 
they perform deep packet inspection when possible, but others, just relied at 
examining headers and collecting statistics (“We do header-only, sampled netflow. 
Main reason for this is the total amount of traffic”). They did agree however that: 
“Deep packet inspection is the preferred method”. 

There was no clear consensus on the amount of traffic that is encrypted; we did get an 
estimate of 10%. This leaves plenty of opportunity to perform deep packet inspection 
to try to detect malware inside the network. Even if all traffic were encrypted, we 
could still perform it on the end hosts, when packets get decrypted. 

Experts estimate that in a few years time we will be talking about network speeds in 
the ten to one hundred gigabits per second. 

 

3.4 Malware Types, Delivery and Presentation 

With respect to attacks we should be looking for, there were no clear-cut responses, 
instead there is a variety of opinions. Botnet traffic was brought up along with the 
associated malware. Malicious code delivered inside office and PDF documents. 

D0: Requirements Analysis - 10 -  



i-Code: Real-time Malicious Code Identification HOME/2009/CIPS/AG/C2-050 
www.icode-project.eu 

Browser attacks are believed to continue. Also attacks on different kinds of devices 
were brought up, for example, mobile devices being a likely target in the future. 

As far as reporting goes, there was feeling that this is a very important matter. An 
expert noted: “Our experience has shown, that detailed information about the attack 
and especially how to recover post-attack is very important. Otherwise, the user 
will likely miss some backdoors or other malware and the attack will go on.” 

 

3.5 Additional Remarks 

Some of the experts also expressed interest in working with us and recommended 
conference calls to further discuss new ideas. They also expressed interests in the end 
product on this work: “… sure we would be willing to test your solutions”. This is 
something we plan to pursue. 
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4 Requirements 

 

Given the prior work done in the field, along with the input we have come across from 
a diverse set of experts in the field of network security and malware, we will focus our 
work (i) on detecting malicious code on the network, and (ii) on classifying this 
malware and providing information concerning it. We believe that the project 
addresses a very important issue for the following reasons: 

First, the proposed system will be able to identify malicious code before this reaches 
the victim computer. Second, by deploying our systems in appropriate network points 
one will be able to see both incoming and outgoing attacks and identify not only 
external attackers, but also “internal” computers which have been compromised. 

Designing, implementing and deploying the proposed system presents several 
challenges. We classify them in the subsections that follow and go into detail about 
the specific requirements.  

 

4.1 Speed 

As network bandwidth doubles every few years, it is getting increasingly difficult to 
perform sophisticated malware detection and identification at line speeds. Currently 
it is possible to perform such tasks at 100Mbits to 1Gbit per second  relatively easy. 
We can also do it at speeds up to 10Gbit per second with some extra effort and 
additional or specialized resources. 

From the input we had from the interviews with the experts, it is safe to assume that 
this will not suffice in a few years time. We are moving to networks of speeds that will 
reach 40 to 100Gbits per second. Any techniques, protocols and tools we develop 
must cope with the aforementioned traffic rates. 

 

4.2 Coverage 

Since up to a few years ago, attacks had been large-scale high, impact, and to some 
extent, short lived. This trend has been reversed in the last few years. Cyber-attackers 
continuously develop even stealthier methods making it increasingly difficult to 
detect them. Taking this further, these attacks may take the form of targeted attacks. 
That is, attacks that may be customized to strike a certain target in a particular and 
unique way. 

Developing countermeasures for this type of malicious activity can prove very hard to 
counter. However, we should strive to offer as much coverage as possible in any 
mechanisms we develop. Good coverage may translate in capturing a large 
percentage of attacks, even if some, very stealthy and limited scope attacks get 
through. 
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4.3 False Positives 

Malware detection systems often suffer from false positives: detection of behaviour 
that seems anomalous, but is not malicious. One may think that this is not a 
significant problem as it is better to be “safe than sorry”.  On second thought, 
however it becomes clear that things are not that simple. False positives create extra 
workload for the defender, that is the more time the defender spends on examining 
ultimately benign traffic, the less time they have to deal with actual threats. 

This has been identified as one of the main problems when dealing with attacks. Our 
malware analysis system must be able to quickly and accurately decide what is 
malicious and what is not. This will offload the detection engine making it more 
capable when dealing with the high rates of traffic we expect in the next few years. 

 

4.4 Device Heterogeneity 

End user devices come in all shapes and forms. Detection systems may need to take 
this heterogeneity into account and provide solutions for the different types of 
devices. The variety of devices, often translate to different operating systems, libraries 
and applications. Any malware analysis and detection system that will be developed 
has to take this into account. 

In the context of the current project we do not expect to implement systems that 
provide protection for all possible combinations of devices and software stacks??( do 
you mean attacks?. That would be infeasible given the limited time provided for this 
project. What we do plan however is to implement solutions for the more popular 
hardware devices and software stacks. We also plan to create solutions that can be 
applied to a broad set of hardware devices and software stacks. 

 

4.5 Network Heterogeneity 

We are evolving from DSL and leased lines, to fibre to the customer, while on the 
wireless front we are witnessing an explosion of different technologies for cellular, 
broadband and personal networks, and on the logical side, intranets, extranet and 
overlays. All these types of networks create new opportunities for the attackers. For 
example, now the attackers have a lot of capacity in terms of the rate of attack, should 
they try to be aggressive. They also have multiple avenues in terms of reaching the 
victim, by selecting which network to use in order to carry out an attack. 

The malware identification system we develop must take these new topological 
realities in mind. The placement of detectors must be such that they can counter 
attacks following variable attack paths. 

 

4.6 Protocol Diversity 

The richness of the application space in today’s Internet generates data traffic at rates 
and richness that seemed unimaginable a decade ago. This data traffic on modern 
networks is transferred over a plethora of network protocols. Protocols are being 
developed to address specific application needs such as, HTTP, SOAP, a plethora of 
P2P protocols, FTP, VoIP etc.: Any malware detection and forensics system must be 
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able to identify attacks propagating on any of the protocols being used today. This is 
necessary as attackers launch their attack vectors against any, and every, potential 
target application. 

This requirement forces us to closely look at data packets instead of simply relying on 
a quick inspection. The algorithms and systems we develop must be capable of 
performing deep packet inspection on traffic flows when trying to identify covert 
attacks. 
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5 Preliminary Design 

We will spend the next few paragraphs going over a preliminary design for our real-
time malicious code identification framework. Our design is broken into multiple 
steps and will move along the requirements outlined in the previous section. 

 

5.1 Network-level Emulation and Communication Pattern 
Detectors 

To accommodate our requirements of coverage and diversity, we plan to start by 
implementing malware detection method that operates at the network level. This 
eliminates a lot of the problems of stand-alone, end-host detectors. We will use 
NEMU as a starting point [43]. NEMU uses a heuristic detection method that scans 
network traffic streams for the presence of previously unknown polymorphic 
shellcode. This approach relies on an embedded CPU emulator that executes every 
potential instruction sequence in the inspected traffic, aiming to identify the 
execution behavior of polymorphic shellcode. We plant to extend NEMU with 
capabilities to detect metamorphic malware as well. We also want to adjust this work 
to detect malware living inside PDF, and similar files. 

Malware is often used to take over hosts to create botnets, and those same botnets are 
then used to spread more malware (among other things). Communication patterns 
between bots are often encrypted making them harder to detect. We plan to develop 
methods for detecting the command and control infrastructures of botnets using 
entropy in the communication patterns. We believe this method will work in the 
presence of both diverse and encrypted protocols. 

 

5.2 Malware Extraction and Analysis 

We are currently working on developing better shellcode-extraction methods. While 
experimenting with these shellcodes, we plan to improve our classification and 
clustering methods. Our new approach will focus less on flow-control graphs, as 
previous work has done, and more on novel methods. What we are interested in is to 
understand what a shellcode downloads, after it is activated, and from where. 

Our ultimate goal is to improve end-host-level detection of malware. This can be 
accomplished by (i) evaluating different behavior-based techniques against a large 
dataset of malicious/benign behaviors, (ii) extracting high-quality behavioural 
signatures, and (iii) designing and building the infrastructure to match them. 

 

5.3 High-speed Detection 

Our final step is to work on every component operating in real-time. To do this we 
plan to build a high-speed infrastructure. To achieve this we initially intend to take a 
two pronged approach. The first one is to parallelize NEMU. The second method is to 
use graphics processors to accelerate the basic operations needed. That is string 
matching for fast, signature detection [30]. 
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5.4 Integration 

All of the above components will be brought together at the integration phase. For 
this we will build a forensics console. The forensics console will collect information 
from the various components and present them in a comprehensive way to the user of 
the real-time malware identification system. 
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