

European Commission
Directorate-General Home Affairs

Prevention, Preparedness and Consequence Management of Terrorism
and other Security-related Risks Programme

HOME/2009/CIPS/AG/C2-050
i-Code: Real-time Malicious Code Identification

D0: Requirements Analysis

Workpackage: WP0: Requirements Analysis
Contractual delivery date: October 2010
Actual delivery date: October 2010
Leading partner: FORTH
Contributing partners: Politecnico di Milano, Institute Eurécom, Technical University

of Vienna, Vrije Universiteit
Editor: Sotiris Ioannidis
Contributors: Stefano Zanero, Davide Balzarotti, Paolo Milani, Herbert Bos
Internal Reviewers: Andreas Moser, Andrea Lanzi, Kallia Marakomihelaki

Executive Summary:

In this deliverable we present our findings about the state of the art in high-speed pattern
recognition, signature generation from attack vectors and malware analysis. All these are
components necessary to perform real-time malicious code identification. Furthermore, we
have interviewed experts in the field, from a variety of organizations, including ISPs, security
companies, search providers, research institutions, etc. to provide guidelines about the
context and direction that the i-Code project should follow.

With the support of the Prevention, Preparedness and Consequence Management of

Terrorism and other Security-related Risks Programme.
European Commission - Directorate-General Home Affairs

This project has been funded with the support of the Prevention, Preparedness and Consequence Management of
Terrorism and other Security-related Risks Programme of the European Commission - Directorate-General Home
Affairs. This publication reflects the views only of the author, and the Commission cannot be held responsible for
any use which may be made of the information contained therein.

http://www.icode-project.eu/�

i-Code: Real-time Malicious Code Identification HOME/2009/CIPS/AG/C2-050
www.icode-project.eu

Table of Contents

TABLE OF CONTENTS.. 3

1 INTRODUCTION ... 4

2 BACKGROUND.. 5

2.1 SIGNATURE GENERATION ... 5
2.2 HIGH-SPEED PATTERN RECOGNITION ... 6
2.3 MALWARE ANALYSIS ... 7

3 INTERVIEWS WITH THE EXPERTS .. 9

3.1 NETWORK AND HOST.. 10
3.2 TOOLS AND RESOURCES ... 10
3.3 RATE REQUIREMENTS... 10
3.4 MALWARE TYPES, DELIVERY AND PRESENTATION .. 10
3.5 ADDITIONAL REMARKS .. 11

4 REQUIREMENTS .. 12

4.1 SPEED ... 12
4.2 COVERAGE.. 12
4.3 FALSE POSITIVES .. 13
4.4 DEVICE HETEROGENEITY ... 13
4.5 NETWORK HETEROGENEITY ... 13
4.6 PROTOCOL DIVERSITY .. 13

5 PRELIMINARY DESIGN.. 15

5.1 NETWORK-LEVEL EMULATION AND COMMUNICATION PATTERN DETECTORS 15
5.2 MALWARE EXTRACTION AND ANALYSIS .. 15
5.3 HIGH-SPEED DETECTION... 15
5.4 INTEGRATION.. 16

6 BIBLIOGRAPHY.. 17

D0: Requirements Analysis - 3 -

i-Code: Real-time Malicious Code Identification HOME/2009/CIPS/AG/C2-050
www.icode-project.eu

1 Introduction

As creation of malicious software continues to grow at alarming rates, we as security
researchers are forced to develop new ways to counter this problem. Since we are now
dealing with a threat that is growing in both scale and complexity, as well as in speed
of infection new techniques are required. Real-time malicious code identification is
one of the methods that we believe will play a significant role in countering this
threat.

In this document we provide an overview of the state of the art real-time malicious
code identification area. Specifically we discuss background work done in the area of
high-speed pattern recognition, signature generation and malware analysis. These
three areas form the backbone of real-time malware detection. We used this
bibliographical survey as a guideline for the direction we should take towards
developing a real-time malicious code identification framework.

To further guide our compilation of the set of requirements necessary, we conducted
interviews with experts in the field of network security. We selected those experts
from a large cross-section of industry and also academia. Specifically from, ISPs,
NRENs, security companies, search providers, CERTs, research institutions, etc.

We conclude this document by laying out the axes along which we plan to carry out
the work necessary to build a real-time malicious code identification framework.

D0: Requirements Analysis - 4 -

i-Code: Real-time Malicious Code Identification HOME/2009/CIPS/AG/C2-050
www.icode-project.eu

2 Background

The goal of Internet attacks carried out by worms, viruses and other malware, is to
subvert the protection of the target system and establish complete control. The way
these attacks are usually carried out are by targeting a specific vulnerable application
on the victim that enables the attacker to transfer the execution of the application to
attacker-crafted code. This can be accomplished in a variety of ways, including, buffer
and integer overflows, format string attacks, and others. These attacks aim to hijack
the instruction pointer of the vulnerable program and then execute arbitrary code.
Often the code executed is a command shell, and that is why the attack vector, that is
the data sent to carry out the attack, is called a shellcode. Once a command shell, or
other attacker-controlled code, starts executing, it does so with the permissions and
privileges of the compromised application. Identifying malware at high network
speed, that is, detecting the malware presence, fingerprinting it, classifying it and
producing a notification is of paramount importance. We now look into the state-of-
the-art in malware identification.

2.1 Signature Generation

To perform any kind of high-speed malware identification it is necessary to have
some sort of signatures in order to identify the malware. Detecting zero-day
polymorphic malware can be extremely difficult since no such signatures exist. The
first attempts to detect such malware focused on detecting a sled component in the
code of the attack vector [31, 32]. Unfortunately such sleds are not always present, as
one can craft the attack to not require a sled, and most will know Internet worms did
not employ one. Systems like Buttercup [33] try to identify polymorphic buffer
overflows by detecting the ranges of possible return addresses for existing buffer
overflow vulnerabilities. This approach is not particularly effective against more
sophisticated attacks.

Other works try to automatically generate signature for unknown malware by looking
for common byte sequences across different malware instances. These methods are
capable of producing some sort of zero-day malware detection signatures by
correlating data payloads from suspicious traffic flows [34, 35, 36]. Such approaches
have a tendency to create a lot of false positives and cannot counter attack by using
polymorphic malware, as they do not contain sufficiently long common byte
sequences [37].

Systems such as [38, 39, 40, 41] create signatures that can match polymorphic
malware. Detecting common invariants that exist in different malware, like return
addresses, protocol framing, etc. does this. The generated signatures can be
expressed as regular expressions or statistical distributions, and be used for high-
speed detection by systems as discussed in the previous subsection. However, more
aggressively polymorphic malware render such systems largely ineffective. The
problem is that for such systems to work they require a lot of malware instances
before classifying something as an attack. This means that targeted attacks may pass
unnoticed [47].

D0: Requirements Analysis - 5 -

i-Code: Real-time Malicious Code Identification HOME/2009/CIPS/AG/C2-050
www.icode-project.eu

2.2 High-speed Pattern Recognition

Pattern matching is the most critical operation that affects the performance of
network intrusion detection systems. These systems can be used to identify malware
as they propagate through the network. Pattern matching algorithms can be classified
into single- and multi-pattern algorithms.
In single pattern matching algorithms, each pattern is searched for in a given text
individually. This means that if we have k patterns to be searched, the algorithm must
be repeated k times. Knuth-Morris-Pratt [18] and Boyer-Moore [6] are some of the
most widely used single pattern matching algorithms. Knuth- Morris-Pratt is able to
skip characters when a mismatch occurs in the comparison phase using a partial-
match table for each pattern. Each table is built by preprocessing every pattern
separately. Boyer-Moore is the most widely used single-pattern algorithm. Its
execution time can be sub-linear if the suffix of the string to be searched for appears
infrequently in the input stream, due to the skipping heuristics that it uses.
Multi-pattern string matching algorithms, search for a set of patterns in a body of text
simultaneously. This is achieved by preprocessing the set of patterns and building an
automaton that will be used in the matching phase to scan the text. The automaton
can be thought of as a state machine that is represented as a trie, a table or a
combination of the two. Each character of the text will be searched only once. Multi-
pattern matching scales much better than algorithms that search for each pattern
individually. Multi-pattern string matching algorithms include Aho-Corasick [1], Wu-
Manber [2] and Commentz-Walter [3].
Most Network Intrusion Detection Systems (NIDS) use finite automata and regular
expressions [4,5,6] to match patterns. Coit et al. [7] improved the performance of
Snort by combining the Aho-Corasick keyword trie with the skipping feature of the
Boyer-Moore algorithm. Fisk and Vaghese enhance the Boyer-Moore-Horspool
algorithm to simultaneously match a set of rules. The new algorithm, called Set-wise
Boyer-Moore-Horspool [8], was shown to be faster than both Aho-Corasick and
Boyer-Moore for sets with less than 100 patterns. Tuck et al. [9] optimized the Aho-
Corasick algorithm by applying bitmap node and path compression.
Snort from version 2.6 and onwards uses only flavors of the Aho-Corasick for exact-
match pattern detection. Specifically, it contains a variety of implementations that are
differentiated by the type of the finite automaton they use (NFA or DFA), and the
storage format they use to keep it in memory (full, sparse, banded, trie, etc.). It
should be mentioned, however, that the best performance is achieved with the full
version that uses a deterministic finite automaton (DFA) at the cost of high memory
utilization [10].
To speed-up the inspection process, many IDS implementations are based on
specialized hardware. By using content addressable memory (CAM), which is suitable
to perform parallel comparison for its contents against the input value, they are very
well suited for use in intrusion detection systems [11, 12]. However, they have a high
cost per bit.
Many reconfigurable architectures have been implemented for intrusion detection.
Most approaches involve building an automaton for a string to be searched,
generating a specialized hardware circuit using gates and flip-flops for the
automaton, and then instantiating multiple such automata in the reconfigurable chip
to search the streaming data in parallel. However, the circuit implemented on the
FPGA to perform the string matching is designed based on the underlying hardware
architecture to adjust to a given specific rule set. To adjust to a new rule set, one must
program a new circuit (usually in a hardware description language), which is then

D0: Requirements Analysis - 6 -

i-Code: Real-time Malicious Code Identification HOME/2009/CIPS/AG/C2-050
www.icode-project.eu

compiled down through the use of CAD tools. Any changes in the rule set require the
recompilation, regeneration of the automaton, re-synthesis, replacement and re-
routing of the circuits, which is a time consuming and difficult procedure.
Sidhu and Prasanna implemented a regular expression matching architecture for
FPGAs [13]. Baker et al. also investigated efficient pattern matching as a signature
based method [14]. In [15], the authors used hardware bloom filters to match
multiple patterns against network packets at constant time. Attig et al. proposed a
framework for packet header processing in combination with payload content
scanning on FPGAs [16].
Several approaches attempt to reduce the amount of memory needed to economically
fit in on-chip memory [17,18,19]. However, the on-chip hardware resource
consumption grows linearly with the number of characters to be searched. In [20],
the authors convert a string set into many tiny state machines, each of which searches
for a portion of the strings and a portion of the bits of each string.
Other approaches involve the cooperation with network processors in order to
pipeline the processing stages assigned to each hardware resource [21], as well as the
entire implementation of an IDS on a network processor [22, 23]. Computer clusters
have also been proposed to offload the workload of a single computer [24, 25, 26, 27].
The cost however remains high, since it requires multiple processors, a distribution
network, and a clustered management system.
On the contrary, modern GPUs have low design cost while their increased
programmability makes them more flexible than ASICs. Most graphic cards
manufacturers provide a high-level APIs that offer high programming capabilities
and further ensure forward compatibility for future releases, in contrast with most
FPGA implementations that are based on the underlying hardware architecture and
need to be reconfigured whenever a change occurs in the rule set. Furthermore, their
low design cost, the highly parallel computation and the potential that they are
usually underutilized, especially in hosts used for intrusion detection purposes,
makes them suitable for use as an extra low-cost coprocessor for time-consuming
problems, like pattern matching.
PixelSnort [28] is a port of the Snort IDS that offloads packet matching to an NVIDIA
6800GT. The GPU programming was complicated, since the 6800GT did not support
a general-purpose programming model for GPUs (as the G80 used in our work). The
system encodes Snort rules and packets to textures and performs the string searching
using the KMP algorithm on the 16 fragment shaders in parallel. However, PixelSnort
does not achieve any speed-up under normal-load conditions. Furthermore,
PixelSnort does not have any multi-pattern matching algorithms ported to GPU. This
is a serious limitation since multi-pattern matching algorithms are the default for
Snort. In a more recent work, Marziale et al. [29] evaluated the effectiveness of
offloading the processing of a file-carving tool to the GPU. The system was
implemented on the G80 architecture and the results showed that GPU support can
substantially increase the performance of digital forensics software that relies on
binary string search. Gnort [30] is a high-performance GPU based implementation of
the Snort IDS. Performance results showed that Gnort can scale to the gigabits per
second when performing intrusion detection.

2.3 Malware Analysis

When a malware is discovered it must be analyzed to determine the kind of threat it
poses to the network. Since malware generation by the attackers if often automatic,

D0: Requirements Analysis - 7 -

i-Code: Real-time Malicious Code Identification HOME/2009/CIPS/AG/C2-050
www.icode-project.eu

such samples grow at very high rates and spread on the Internet in high numbers [38,
45, 46]. To counter this analysis must be automatic. Traditional approaches, statically
analyze the code of the malware. More advanced approaches take a different route.
Behavioral analysis executes malware samples for preset time duration inside an
emulated environment. During that time, the malware is being monitored closely.
The observation assists in automatically generating a report on the behavior of the
malware, which can be used in further analysis. The difference with the traditional
methods is that it is a black-box process in which one does not look inside the
malware, but instead it looks at the interactions it has with the environment. This
simplifies things greatly, since as we have mentioned before most of the malware
today is polymorphic and metamorphic. Simply executing it, deals with the process of
decryption, obfuscation and packing, as these steps happen on their own. On the
down side, each execution can only monitor one execution path of the malware, so
reports may be incomplete. To address this limitation Moser et al. [42] proposed a
method for multiple execution path analysis.

D0: Requirements Analysis - 8 -

i-Code: Real-time Malicious Code Identification HOME/2009/CIPS/AG/C2-050
www.icode-project.eu

3 Interviews with the Experts

In order to have a more complete and clear view of the issues involved in real-time
malicious code identification, we conducted a series of interviews with experts in the
field of network security. To get a well-rounded view, we selected those experts from
a large cross-section of industry and also academia. Specifically from, ISPs, NRENs,
security companies, search providers, CERTs, research institutions, etc.

To conduct these interviews we compiled, but were not limited to, a set of discussion
points, which we used as guidelines. Here we summarize the core list of discussion
points:

1. Do you do protection on the net or on the host?

2. What sort of tools or protection do you use? Specifically,
do you use any of the following: IDS, IPS, honeypots,
firewalls, botnet detectors, extrusion detection tools,
DDoS protection/detection tools, and/or other forensics
tools?)

3. What sort of resources do you protect and with what tools
(see above)?

4. What sort of links do you protect and with what tools?
(Link type, capacity, etc.)

5. Who are you trying to protect and from whom?

6. Do you look at the entire traffic? Do you do sampling? Do
you look at specific flows? Do you do header-only?

7. What sort of network speeds would real-time detection make
sense today?

8. What about in the next 3 years?

9. Do you do deep packet inspection?

10. What percentage of traffic is encrypted?

11. What types of things should we be looking for?
Shellcode, botnet communications or any other malware?
Any suggestions?

12. What sort of information would be useful to present
to the "user" of such a system? Statistics? Attacks as
they happen? Something else?

As one can see from the above discussion points, what we tried to accomplish is first
determine the importance of the network versus the end host. Then we drilled down
on specific types of tools and resources that need protection. The next set of points try
to determine the rates that any real-time malware identification system must cope
with. Finally, we focus on types of attacks and delivery methods as well as what must
be presented to the “end user” of such a system.

D0: Requirements Analysis - 9 -

i-Code: Real-time Malicious Code Identification HOME/2009/CIPS/AG/C2-050
www.icode-project.eu

3.1 Network and Host

Almost all interviewees reported that protection is taking place at both the network
and the host. There were however a couple of exceptions. Those were from the
experts that worked for network providers. This was expected, as the business model
of network providers is to provide connectivity. One comment was “… as an ISP
doesn’t have any firewall functionality that is offered as a service. We do have an
anti-DDoS service installed at the core of our network which can mitigate some
attacks.”

3.2 Tools and Resources

With respect to the tools used, the experts reported that they use a variety of
solutions. These solutions cover the entirety of security tool-types, both commercial
and public, open source. It is clear that the development of a real-time malicious
code identification framework would fit well with the tools already used out there in
practice. Security tools such as IDS, IPS and antivirus being the most prominent
examples.

One expert noted: “However, we also exploit these tools to collect information about
compromised hosts to support the incident handling service of our CERT.” The work
proposed here would assist them, and others like them, in real-time reporting and
handling of incidents.

All the experts noted that they use those security tools to protect their vulnerable
resources on the network and on the end hosts.

3.3 Rate Requirements

In our interviews, we wanted to get a feel of what data rates were typical used in the
experts’ organizations. The respondents placed traffic in the order of a few to ten
gigabits per second. The responses were split, however when asked about in how
much detail they examined the traffic. The more security conscious responded that
they perform deep packet inspection when possible, but others, just relied at
examining headers and collecting statistics (“We do header-only, sampled netflow.
Main reason for this is the total amount of traffic”). They did agree however that:
“Deep packet inspection is the preferred method”.

There was no clear consensus on the amount of traffic that is encrypted; we did get an
estimate of 10%. This leaves plenty of opportunity to perform deep packet inspection
to try to detect malware inside the network. Even if all traffic were encrypted, we
could still perform it on the end hosts, when packets get decrypted.

Experts estimate that in a few years time we will be talking about network speeds in
the ten to one hundred gigabits per second.

3.4 Malware Types, Delivery and Presentation

With respect to attacks we should be looking for, there were no clear-cut responses,
instead there is a variety of opinions. Botnet traffic was brought up along with the
associated malware. Malicious code delivered inside office and PDF documents.

D0: Requirements Analysis - 10 -

i-Code: Real-time Malicious Code Identification HOME/2009/CIPS/AG/C2-050
www.icode-project.eu

Browser attacks are believed to continue. Also attacks on different kinds of devices
were brought up, for example, mobile devices being a likely target in the future.

As far as reporting goes, there was feeling that this is a very important matter. An
expert noted: “Our experience has shown, that detailed information about the attack
and especially how to recover post-attack is very important. Otherwise, the user
will likely miss some backdoors or other malware and the attack will go on.”

3.5 Additional Remarks

Some of the experts also expressed interest in working with us and recommended
conference calls to further discuss new ideas. They also expressed interests in the end
product on this work: “… sure we would be willing to test your solutions”. This is
something we plan to pursue.

D0: Requirements Analysis - 11 -

i-Code: Real-time Malicious Code Identification HOME/2009/CIPS/AG/C2-050
www.icode-project.eu

4 Requirements

Given the prior work done in the field, along with the input we have come across from
a diverse set of experts in the field of network security and malware, we will focus our
work (i) on detecting malicious code on the network, and (ii) on classifying this
malware and providing information concerning it. We believe that the project
addresses a very important issue for the following reasons:

First, the proposed system will be able to identify malicious code before this reaches
the victim computer. Second, by deploying our systems in appropriate network points
one will be able to see both incoming and outgoing attacks and identify not only
external attackers, but also “internal” computers which have been compromised.

Designing, implementing and deploying the proposed system presents several
challenges. We classify them in the subsections that follow and go into detail about
the specific requirements.

4.1 Speed

As network bandwidth doubles every few years, it is getting increasingly difficult to
perform sophisticated malware detection and identification at line speeds. Currently
it is possible to perform such tasks at 100Mbits to 1Gbit per second relatively easy.
We can also do it at speeds up to 10Gbit per second with some extra effort and
additional or specialized resources.

From the input we had from the interviews with the experts, it is safe to assume that
this will not suffice in a few years time. We are moving to networks of speeds that will
reach 40 to 100Gbits per second. Any techniques, protocols and tools we develop
must cope with the aforementioned traffic rates.

4.2 Coverage

Since up to a few years ago, attacks had been large-scale high, impact, and to some
extent, short lived. This trend has been reversed in the last few years. Cyber-attackers
continuously develop even stealthier methods making it increasingly difficult to
detect them. Taking this further, these attacks may take the form of targeted attacks.
That is, attacks that may be customized to strike a certain target in a particular and
unique way.

Developing countermeasures for this type of malicious activity can prove very hard to
counter. However, we should strive to offer as much coverage as possible in any
mechanisms we develop. Good coverage may translate in capturing a large
percentage of attacks, even if some, very stealthy and limited scope attacks get
through.

D0: Requirements Analysis - 12 -

i-Code: Real-time Malicious Code Identification HOME/2009/CIPS/AG/C2-050
www.icode-project.eu

4.3 False Positives

Malware detection systems often suffer from false positives: detection of behaviour
that seems anomalous, but is not malicious. One may think that this is not a
significant problem as it is better to be “safe than sorry”. On second thought,
however it becomes clear that things are not that simple. False positives create extra
workload for the defender, that is the more time the defender spends on examining
ultimately benign traffic, the less time they have to deal with actual threats.

This has been identified as one of the main problems when dealing with attacks. Our
malware analysis system must be able to quickly and accurately decide what is
malicious and what is not. This will offload the detection engine making it more
capable when dealing with the high rates of traffic we expect in the next few years.

4.4 Device Heterogeneity

End user devices come in all shapes and forms. Detection systems may need to take
this heterogeneity into account and provide solutions for the different types of
devices. The variety of devices, often translate to different operating systems, libraries
and applications. Any malware analysis and detection system that will be developed
has to take this into account.

In the context of the current project we do not expect to implement systems that
provide protection for all possible combinations of devices and software stacks??(do
you mean attacks?. That would be infeasible given the limited time provided for this
project. What we do plan however is to implement solutions for the more popular
hardware devices and software stacks. We also plan to create solutions that can be
applied to a broad set of hardware devices and software stacks.

4.5 Network Heterogeneity

We are evolving from DSL and leased lines, to fibre to the customer, while on the
wireless front we are witnessing an explosion of different technologies for cellular,
broadband and personal networks, and on the logical side, intranets, extranet and
overlays. All these types of networks create new opportunities for the attackers. For
example, now the attackers have a lot of capacity in terms of the rate of attack, should
they try to be aggressive. They also have multiple avenues in terms of reaching the
victim, by selecting which network to use in order to carry out an attack.

The malware identification system we develop must take these new topological
realities in mind. The placement of detectors must be such that they can counter
attacks following variable attack paths.

4.6 Protocol Diversity

The richness of the application space in today’s Internet generates data traffic at rates
and richness that seemed unimaginable a decade ago. This data traffic on modern
networks is transferred over a plethora of network protocols. Protocols are being
developed to address specific application needs such as, HTTP, SOAP, a plethora of
P2P protocols, FTP, VoIP etc.: Any malware detection and forensics system must be

D0: Requirements Analysis - 13 -

i-Code: Real-time Malicious Code Identification HOME/2009/CIPS/AG/C2-050
www.icode-project.eu

able to identify attacks propagating on any of the protocols being used today. This is
necessary as attackers launch their attack vectors against any, and every, potential
target application.

This requirement forces us to closely look at data packets instead of simply relying on
a quick inspection. The algorithms and systems we develop must be capable of
performing deep packet inspection on traffic flows when trying to identify covert
attacks.

D0: Requirements Analysis - 14 -

i-Code: Real-time Malicious Code Identification HOME/2009/CIPS/AG/C2-050
www.icode-project.eu

5 Preliminary Design

We will spend the next few paragraphs going over a preliminary design for our real-
time malicious code identification framework. Our design is broken into multiple
steps and will move along the requirements outlined in the previous section.

5.1 Network-level Emulation and Communication Pattern
Detectors

To accommodate our requirements of coverage and diversity, we plan to start by
implementing malware detection method that operates at the network level. This
eliminates a lot of the problems of stand-alone, end-host detectors. We will use
NEMU as a starting point [43]. NEMU uses a heuristic detection method that scans
network traffic streams for the presence of previously unknown polymorphic
shellcode. This approach relies on an embedded CPU emulator that executes every
potential instruction sequence in the inspected traffic, aiming to identify the
execution behavior of polymorphic shellcode. We plant to extend NEMU with
capabilities to detect metamorphic malware as well. We also want to adjust this work
to detect malware living inside PDF, and similar files.

Malware is often used to take over hosts to create botnets, and those same botnets are
then used to spread more malware (among other things). Communication patterns
between bots are often encrypted making them harder to detect. We plan to develop
methods for detecting the command and control infrastructures of botnets using
entropy in the communication patterns. We believe this method will work in the
presence of both diverse and encrypted protocols.

5.2 Malware Extraction and Analysis

We are currently working on developing better shellcode-extraction methods. While
experimenting with these shellcodes, we plan to improve our classification and
clustering methods. Our new approach will focus less on flow-control graphs, as
previous work has done, and more on novel methods. What we are interested in is to
understand what a shellcode downloads, after it is activated, and from where.

Our ultimate goal is to improve end-host-level detection of malware. This can be
accomplished by (i) evaluating different behavior-based techniques against a large
dataset of malicious/benign behaviors, (ii) extracting high-quality behavioural
signatures, and (iii) designing and building the infrastructure to match them.

5.3 High-speed Detection

Our final step is to work on every component operating in real-time. To do this we
plan to build a high-speed infrastructure. To achieve this we initially intend to take a
two pronged approach. The first one is to parallelize NEMU. The second method is to
use graphics processors to accelerate the basic operations needed. That is string
matching for fast, signature detection [30].

D0: Requirements Analysis - 15 -

i-Code: Real-time Malicious Code Identification HOME/2009/CIPS/AG/C2-050
www.icode-project.eu

5.4 Integration

All of the above components will be brought together at the integration phase. For
this we will build a forensics console. The forensics console will collect information
from the various components and present them in a comprehensive way to the user of
the real-time malware identification system.

D0: Requirements Analysis - 16 -

i-Code: Real-time Malicious Code Identification HOME/2009/CIPS/AG/C2-050
www.icode-project.eu

6 Bibliography

[1] A. V. Aho and M. J. Corasick. Efficient string matching: an aid to bibliographic
search. Communications of the ACM, 18(6):333–340, June 1975.

[2] S. Wu and U. Manber. A fast algorithm for multi-pattern searching. Technical
Report TR-94-17, 1994.

[3] B. Commentz-Walter. A string-matching algorithm fast on the average. In Pro-
ceedings of the 6th International Colloquium on Automata, Languages and Pro-
gramming, pages 118–131.

[4] M. Roesch. Snort: Lightweight intrusion detection for networks. In Proceedings
of the 1999 USENIX LISA Systems Administration Conference, November 1999.

[5] V. Paxson. Bro: A system for detecting network intruders in real-time. In Pro-
ceedings of the 7th conference on USENIX Security Symposium (SSYM ’98),
pages 3–3, Berkeley, CA, USA, 1998. USENIX Association.

[6] C. IOS. IPS deployment guide. http://www.cisco.com.
[7] C. Coit, S. Staniford, and J. McAlerney. Towards faster string matching for

intrusion detection or exceeding the speed of Snort. In Proceedings of DARPA
Information Survivability Conference & Exposition II (DISCEX ’01), June 2001.

[8] M. Fisk and G. Varghese. Applying fast string matching to intrusion detection.
Technical Report In preparation, successor to UCSD TR CS2001-0670, University
of California, San Diego, 2002.

[9] N. Tuck, T. Sherwood, B. Calder, and G. Varghese. Deterministic memory-
efficient string matching algorithms for intrusion detection. In Proceedings of the
IEEE Infocom Conference, pages 333–340, 2004.

[10] TheSnortProject.Snortusersmanual2.8.0.http://www.snort.org/docs/snort-
manual/2.8.0/snort manual.pdf.

[11] F. Yu, R. H. Katz, and T. V. Lakshman. Gigabit Rate Packet Pattern-Matching
Using TCAM. In Proceedings of the 12th IEEE International Conference on Net-
work Protocols (ICNP ’04), pages 174–183, Washington, DC, USA, October 2004.
IEEE Computer Society.

[12] S. Yusuf and W. Luk. Bitwise optimised CAM for network intrusion detection
systems. In Proceedings of International Conference on Field Programmable
Logic and Applications, pages 444–449, 2005.

[13] R. Sidhu and V. Prasanna. Fast regular expression matching using FPGAs. In
IEEE Symposium on Field-Programmable Custom Computing Machines
(FCCM01), 2001.

[14] Z. K. Baker and V. K. Prasanna. Time and area efficient pattern matching on
FPGAs. In Proceedings of the 2004 ACM/SIGDA 12th International Symposium
on Field Programmable Gate Arrays (FPGA ’04), pages 223–232, New York, NY,
USA, 2004. ACM.

[15] S. Dharmapurikar, P. Krishnamurthy, T. S. Sproull, and J. W. Lockwood. Deep
packet inspection using parallel bloom filters. IEEE Micro, 24(1):52–61, 2004.

[16] M. Attig and J. Lockwood. A framework for rule processing in reconfigurable
network systems. In Proceedings of the 13th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM ’05), pages 225–234, Wash-
ington, DC, USA, 2005. IEEE Computer Society.

[17] Z. K. Baker and V. K. Prasanna. Time and area efficient pattern matching on

D0: Requirements Analysis - 17 -

http://www.cisco.com/

i-Code: Real-time Malicious Code Identification HOME/2009/CIPS/AG/C2-050
www.icode-project.eu

FPGAs. In Proceedings of the 2004 ACM/SIGDA 12th International Symposium
on Field Programmable Gate Arrays (FPGA ’04), pages 223–232, New York, NY,
USA, 2004. ACM.

[18] N. Tuck, T. Sherwood, B. Calder, and G. Varghese. Deterministic memory-
efficient string matching algorithms for intrusion detection. In Proceedings of the
IEEEInfocom Conference, pages 333–340, 2004.

[19] S. Dharmapurikar and J. Lockwood. Fast and scalable pattern matching for
content filtering. In Proceedings of the 2005 ACM symposium on Architecture for
networking and communications systems (ANCS ’05), pages 183–192, New York,
NY, USA, 2005. ACM.

[20] L. Tan, B. Brotherton, and T. Sherwood. Bit-split string-matching engines for
intrusion detection and prevention. ACM Transactions on Architecture and Code
Optimization, 3(1):3–34, 2006.

[21] C. Clark, W. Lee, D. Schimmel, D. Contis, M. Kone, and A. Thomas. A hardware
platform for network intrusion detection and prevention. In Proceedings of the
3rd Workshop on Network Processors and Applications (NP3), 2004.

[22] H. Bos and K. Huang. Towards software-based signature detection for intrusion
prevention on the network card. In Proceedings of 8th International Symposium
on Recent Advances in Intrusion Detection (RAID), Seattle, WA, September 2005.

[23] NVIDIA. NVIDIA CUDA Compute Unified Device Architecture Programming
Guide, version 1.1. http://developer.download.nvidia.com/compute/cuda/1 1/
NVIDIA CUDA Programming Guide 1.1.pdf.

[24] C. Kruegel, F. Valeur, G. Vigna, and R. Kemmerer. Stateful intrusion detection
for high-speed networks. In Proceedings of the IEEE Symposium on Security and
Privacy, pages 285– 294, May 2002.

[25] K. Watanabe, N. Tsuruoka, and R. Himeno. Performance of network intrusion
detection cluster system. In Proceedings of The 5th International Symposium on
High Performance Computing (ISHPC-V), 2003.

[26] M. Vallentin, R. Sommer, J. Lee, C. Leres, V. Paxson, and B. Tierney. The NIDS
cluster: Scalable, stateful network intrusion detection on commodity hardware. In
Proceedings of the 10th International Symposium on Recent Advances in
Intrusion Detection (RAID), pages 107–126, 2007.

[27] L.Schaelicke,K.Wheeler,and C.Freeland.SPANIDS: a scalable network intrusion
detection load balancer. In CF ’05: Proceedings of the 2nd conference on
Computing frontiers, pages 315–322, New York, NY, USA, 2005. ACM.

[28] N. Jacob and C. Brodley. Offloading IDS computation to the GPU. In
Proceedings of the 22nd Annual Computer Security Applications Conference on
Annual Computer Security Applications Conference (ACSAC ’06), pages 371–380,
Washington, DC, USA, 2006. IEEE Computer Society.

[29] G. G. R. I. Lodovico Marziale and V. Roussev. Massive threading: Using GPUs to
increase the performance of digital forensics tools. Digital Investigation, 1:73–81,
September 2007.

[30] G. Vasiliadis, S. Antonatos, M. Polychronakis, E. P. Markatos, and S. Ioannidis.
Gnort: High performance network intrusion detection using graphics processors.
In Proceedings of 11th International Symposium on Recent Advances in Intrusion
Detection (RAID), pages 116–134, 2008.

[31] Aycock, J., deGraaf, R., Jacobson, M.: Anti-disassembly using cryptographic
hash functions. Department of Computer Science, University of Calgary, Technical
Report, pp. 793–824, (2005).

[32] Venable, M., Chouchane, M.R., Karim, M.E., Lakhotia, A.: Analyzing memory
accesses in obfuscated x86 executables. In: Proceedings of the conference on

D0: Requirements Analysis - 18 -

i-Code: Real-time Malicious Code Identification HOME/2009/CIPS/AG/C2-050
www.icode-project.eu

D0: Requirements Analysis - 19 -

detection of intru- sions and malware and vulnerability assessment (DIMVA),
(2005).

[33] Pasupulati, A., Coit, J., Levitt, K., Wu, S., Li, S., Kuo, J., Fan, K.: Buttercup: on
network-based detection of polymorphic buffer overflow vulnerabilities. In:
Proceedings of the Network Operations and Management Symposium (NOMS),
pp. 235–248, (2004).

[34] Kim,H.-A.,Karp,B.:Autograph: towards automated, distributed worm signature
detection. In: Proceedings of the 13th USENIX Security Symposium, pp. 271–286,
(2004)

[35] Singh, S., Estan, C., Varghese, G., Savage, S.: Automated worm fingerprinting.
In: Proceedings of the 6th Symposium on Operating Systems Design &
Implementation (OSDI), (2004).

[36] Kreibich, C., Crowcroft, J.: Honeycomb–creating intrusion detection signatures
using honeypots. In: Proceedings of the Second Workshop on Hot Topics in
Networks (HotNets-II), (2003).

[37] Kolesnikov, O., Dagon, D., Lee, W.: Advanced polymorphic worms: evading IDS
by blending in with normal traffic. In: College of Computing, Georgia Institute of
Technology, Atlanta, GA 30332, http://www.cc.ga- tech.edu/ ok/w/ok_pw.pdf,
(2004).

[38] Newsome, J., Karp, B., Song, D.: Polygraph: automatically Generating
signatures for polymorphic worms. In: Proceedings of the IEEE Security & Privacy
Symposium, pp. 226–241, (2005)

[39] Tang, Y., Chen, S.: Defending against Internet worms: a signature-based
approach. In: Proceedings of the 24th Annual Joint Conference of IEEE Computer
and Communication societies (INFOCOM), (2005)

[40] Wang, K., Stolfo, S.J.: Anomalous payload-based network intrusion detection.
In: Proceedings of the 7th International Symposium on Recent Advanced in
Intrusion Detection (RAID), pp. 201–222, (2004)

[41] Li, Z., Sanghi, M., Chen, Y., Kao, M.Y., Chavez, B.: Hamsa: fast signature
generation for zero-day polymorphic worms with provable attack resilience. In:
Proceedings of the 2006 IEEE Symposium on Security and Privacy, pp. 32–47,
2006.

[42] Andreas Moser, Christopher Kruegel, and Engin Kirda. Exploring Multiple
Execution Paths for Malware Analysis. In Proceedings of 2007 IEEE Symposium
on Security and Privacy, 2007.

[43] Michalis Polychronakis, Kostas G. Anagnostakis, and Evangelos P. Markatos.
Network-level Polymorphic Shellcode Detection using Emulation. In Journal in
Computer Virology, vol. 2, no. 4, pp. 257-274, February 2007.

[44] Bos, Herbert, de Bruijn, Willem, Cristea, Mihai ,Nguyen, Trung and
Portokalidis, Georgios, FFPF: fairly fast packet filters. In Proceedings of the 6th
conference on Symposium on Opearting Systems Design & Implementation, pp.
24-24, San Francisco, CA, 2004.

[45] H.-A. Kim and B. Karp. Autograph: toward automated, dis- tributed worm
signature detection. In Proceedings of the 13th USENIX Security Symposium,
August 2004.

[46] S. Singh, C. Estan, G. Varghese, and S. Savage. Automated worm fingerprinting.
In Proceedings of the 6th ACM/USENIX Symposium on Operating System
Design and Implementation (OSDI), Dec. 2004.

[47] R. Perdisci*, D. Dagon, W. Lee, P. Fogla, M. Sharif. Misleading Worm Signature
Generators Using Deliberate Noise Injection. IEEE Symposium on Security and
Privacy, 2006

	Table of Contents
	1 Introduction
	2 Background
	2.1 Signature Generation
	2.2 High-speed Pattern Recognition
	2.3 Malware Analysis

	3 Interviews with the Experts
	3.1 Network and Host
	3.2 Tools and Resources
	3.3 Rate Requirements
	3.4 Malware Types, Delivery and Presentation
	3.5 Additional Remarks

	4 Requirements
	4.1 Speed
	4.2 Coverage
	4.3 False Positives
	4.4 Device Heterogeneity
	4.5 Network Heterogeneity
	4.6 Protocol Diversity

	5 Preliminary Design
	5.1 Network-level Emulation and Communication Pattern Detectors
	5.2 Malware Extraction and Analysis
	5.3 High-speed Detection
	5.4 Integration

	6 Bibliography

