European Commission
Directorate-General Home Affairs

Prevention, Preparedness and Consequence Management of Terrorism
and other Security-related Risks Programme

HOME/2009/CIPS/AG/C2-050
i-Code: Real-time Malicious Code Identification

Deliverable D1: System Design

Workpackage: WP1: System Design

Contractual delivery date: June 2011

Actual delivery date: July 2011

Deliverable Dissemination Level: Public

Editor Herbert Bos (VU)

Contributors FORTH, POLIMI, EURECOM, TUV
Internal Reviewers: FORTH

Executive Summary: In this deliverable, we describe the overall system de-
sign for the i-Code real-time malicious code detection system, focusing on its sub-
systems and their integration. The system design brings together the components of
network-level attack vector detection forensics tools, techniques for the classification
and clustering of shellcode based on the control flow graph, and behavioral-based
malware detection by benign-malicious action comparisons. It also incorporates an
infrastructure design for malcode detection in high-speed networks.

With the support of the Prevention, Preparedness and Consequence Management of
Terrorism and other Security-related Risks Programme. European Commission -
Directorate-General Home Affairs'.

TThis project has been funded with the support of the Prevention, Preparedness and Consequence Manage-
ment of Terrorism and other Security-related Risks Programme of European Commission - Directorate-General
Home Affairs. This publication reflects the views only of the author, and the Commission cannot be held re-
sponsible for any use which may be made of the information contained therein.

www.icode-project.eu 2 July 11, 2011

Contents

Introduction 7
System Design: The Big Picture 9
2.1 The need for an integrated security console 9
2.2 i-Code System Design L. 10
2.3 Requirements L oo 11
2.4 Meeting the requirements 12
Network-level Emulation 13
3.1 Architecture 14
3.2 Runtime Heuristics L. 15
3.2.1 Resolving kernel32.dll 16
3.2.2 Process Memory Scanning 23
3.2.3 SEH-based GetPC Code 26
Shellcode Analysis and Classification 29
4.1 Shellcode Analysis and Collection Architecture 29
4.2 Behavioral Analysis and Unpacking 31
4.3 Shellcode Classification 31
Behaviour-based Detection of Malcode 33
5.1 Motivation 33
5.2 Data Collection 34
5.2.1 Raw Data Collection 35
5.2.2 Data Normalization 37
5.2.3 Experimental Data Set 38
5.3 System Design oo 39
5.3.1 System-Centric Approach to Detect Malicious Behav-
10T . o o e 39

CONTENTS

5.3.2 Creating Access Activity Models 40

6 A Scaleable I/O Architecture 45
6.1 DBottlenecks in network processing 45
6.2 i-Code architecture oo 47
6.3 Buffering 48
6.3.1 POSIX FileI/O 48

6.3.2 Ringbuffers. o 0oL 49

6.3.3 Signal batching oL 50

6.4 TCP/IP on top of shared rings 50

7 Console 51
8 Conclusions 55

www.icode-project.eu 4

July 11, 2011

List of Figures

2.1
2.2

3.1
3.2

3.3

3.4

3.5

5.1

6.1

7.1

i-Code System Design. 10
Adaptors are responsible for conversion between formats. . . 12
Network-level shellcode detection system architecture. 14
A typical example of code that resolves the base address of

kernel32.d11 through the PEB. 18

A snapshot of the TIB and the stack memory areas of a typical
Windows process. The SEH chain consisting of two nodes is
highlighted. 21

Example of code that resolves the base address of kernel32.d11
using backwards searching. 22

A typical system call invocation for checking if the supplied
addressisvalid. o oL 25

Sample system-call log. Due to formatting constraints, some
values are abbreviated and the timestamp, process 1D, and
parent process ID fields are not shown. 35

I/O Bottlenecks in a monolithic OS—the numbers are ex-
plained in the text. oo 47

Mockup of the i-Code console’s main screen, composed by
four parts: header, dashboard, event list and footer. 52

5

LIST OF FIGURES

7.2 Mockup of the i-Code console showing the events matching a
custom filter (in this dummy example, all the events having
destination IP equal to 123.056.123.042 and destination port
equal to 80 or 443). Note that a filter is created by arranging
filter tags in the header section and, once set, the dashboard
shows three additional graphs reflecting this smaller portion
of data. 53

www.icode-project.eu 6 July 11, 2011

CHAPTER 1

Introduction

The i-Code project aims to detect and analyse malicious code and Internet
attacks at real time. Its scope includes the detection of attacks in the net-
work and on the host, the analysis of the malicious code, and post-attack
forensics. Bringing together such different extremes of the security spectrum
in itself makes i-Code both ambitious and valuable.

However, the project is more ambitious than that. Rather than a mere
combination of existing tools, the i-Code consortium intends to develop new
detection architectures and analysis tools. For instance, the project partners
have experience in analyzing and classifying malware (developed in prior
projects), but in this project we turn our attention to doing something
similar for the initial attack vectors (the shellcode). To do so, we must
develop new tools and new analysis techniques, mostly from scratch.

Similarly, the project aims to detect network attacks, and specifically
shellcode, using payload execution at wire-speed, that is to say at gigabit
rates. While payload execution is well-known, the processing involved is so
expensive that it is currently only suitable for very low-speed links: a few
tens of megabits per second. This is unfortunate, because payload execution
is one of very few methods capable of detecting polymorphic shellcode in
the network with high accuracy. Unlike existing network intrusion detection
systems (like Snort), it is not easily fooled by code that modifies itself all
the time, by one or more levels of packing and encoding. Thus, the need to
scale up payload execution is urgent.

Of course, we do not limit ourselves to initial attack vectors. On the
contrary, we look at a wide variety of malicious activities, both on the host
and in the network. This includes malware that is already installed on a
victim machine. What makes i-Code unique, is that it brings together all

7

CHAPTER 1. INTRODUCTION

these detection and analysis techniques, enabling administrators to correlate
events from a variety of sources. Moreover, the shellcode captured by any
one of the sensors (say, in-network payload execution) will be analysed by
our shellcode analysis component. By combining and processing the infor-
mation, i-Code will enable forensics on integrated data sets that would be
hard to achieve with individual tools.

Outline In this document, we sketch the design of the i-Code architecture,
highlighting all the individual components, as well as the way in which they
will be integrated. In Chapter 2, we present the overall design at a fairly high
level. Chapter 3 will discuss the payload execution by means of emulation.
In Chapter 4, we present our design for the classification and clustering of
shellcode, while Chapter 5 explains how we will use behavioural patterns to
detect malware. Chapter 7 proposes and discusses a layout for the i-Code
console. The console will be implemented using web technologies and will
be used for browsing and analysing the events collected by the supported
sensors. Chapter 6 is devoted in more detail to the I/O architecture that we
will develop to speed up payload execution. Finally, in Chapter 8, we will
summarise and conclude.

www.icode-project.eu 8 July 11, 2011

CHAPTER 2

System Design: The Big Picture

i-Code brings together a variety of techniques for real-time detection and
analysis of cyber attacks. Since the nature of these techniques varies wildly,
we should design a solution that unites a number of different inputs in a
meaningful way. In this chapter, we will motivate the need for an integrated
security console, and present a high-level design of the i-Code solution. In
the next few chapters, we will look in more detail at the components that
make up the design.

2.1 The need for an integrated security console

Offering a single view on a variety of sensors and tools benefits administra-
tors by making it easier to correlate events from different sources. Suppose,
for instance, that an administrator first observes suspicious data in the net-
work, destined for the non-privileged DNS server on host A. A little while
later, the administrator receives a second alert, about an unusual brk() sys-
tem call made by the DNS server. Shortly after that, a third alert arrives,
suggesting that an unknown program on host A is hooking certain system
functions on the victim system, in a way that resembles that of rootkits.
While none of these alerts are conclusive evidence of an attack by them-
selves, the three of them occurring in sequence almost certainly represents
an attack. Indeed, using requires/provides analysis and conclude that there
must have been (a) a successful attack on the DNS server by the exploit
observed in the network, (b) that subsequently led to privilege escalation by
means of the brk () kernel exploit to obtain root privileges, which (c¢) in turn
allowed the attackers to install a rootkit by hooking a variety of functions.

9

CHAPTER 2. SYSTEM DESIGN: THE BIG PICTURE

Besides better correlation, however, the combination of multiple detec-
tion and analysis tools may also improve the usefulness of each of the individ-
ual tools. For instance, given a technique to detect shellcode in the network
and a technique to analyse shellcode, the integrated console can immedi-
ately relay the shellcode samples to the analysis tools. If the analysis tools
flags the samples as benign, perhaps no real alert should be presented to the
administrator. If, on the other hand, the analysis tool also finds the sample
suspicious, it may be a good idea to raise an alarm.

2.2 i-Code System Design

The high-level i-Code design is shown in Figure 2.1. It combines host and
network level attack detection tools and various analysis techniques. Alerts
are consolidated in a single interface, known as the i-Code console, to facil-
itate the administrator’s tasks. The red arrows indicate the data produced
by the various other components that are consumed by the console and,
where appropriate, made available to the administrator. The green arrows
indicate data streams set up by the security console itself. For instance, the
console may enable suspicious code captured in the network to an analy-
sis tool. Similarly, the console may select events to provide to a forensics
component.

network emulator classification
(detect in-network attacks send shellcode analyse& cluster shellcode

by payload execution) and mallwa_re for and malware)
analysis

produce: produce:
alerts analysis reports
i-Code
. produce: . Console produce:
orensic repo alerts
forensics Host=based detection
(combine traces to gather y take (identify malware by
evidence of attacks) inputs from all detecting malicuous behaviour
sensors and analyzers

Figure 2.1: i-Code System Design.

In the project, we target novel detection and analysis techniques, al-
though we plan to make the console extensible so that others can plug in

www.icode-project.eu 10 July 11, 2011

2.3. REQUIREMENTS

new tools. Specifically, we want to provide for attack detection techniques
in the network and on the host:

Network emulation Network emulation is a novel technique to detect an
intrusion by means of executing the payload of network traffic on the
fly, and verifying whether or not it contains code that looks like an
attack (shellcode).

Behaviour-based detection Behaviour-based detection means that we
look at the normal behaviour of applications in order to detect de-
viations that are likely to be caused by malware.

For analysis, the project will provide a clustering technique to classify
suspicious shellcode and malware. By clustering such malcode, we can easily
check whether something we detected is entirely new, or resembles code that
we have seen before. As security software vendors receive many throusands
of new samples each day, being able to separate the new ones from the known
ones is increasingly important. The process of selecting what alerts to focus
on, is known as triage. The i-Code console will help separate “serious cases”
from “old news.”

2.3 Requirements

The i-Code security console is the central component in the design. It is
responsible for the integration of all other components. Since different com-
ponents use different formats, the integration is not trivial. In general, we
designed the i-Code console to meet the following requirements:

Extensible. There are many detection tools and equally many analysis
tools. In this project, we primarily aim for novel techniques, but the
design will be open and extensible, so other components can be added
later.

Even correlation The user should have control over which events and
alerts to view in the console. By presenting two event streams next to
each other in the console, correlating them will be easier.

Flexible presentation The console should support a variety of techniques
to represent events an data. For instance, we may look at alerts in a
bar chart, a table, or even in raw format. The console should provide
generic methods to allow different data to be represented in a number
of ways.

Forwarding. Also, whenever suspicious code is found either on the host,
or in the network, we want to make it possible to automatically feed it
to a code analysis component that will classify the code to see whether
it resembles malcode.

www.icode-project.eu 11 July 11, 2011

CHAPTER 2. SYSTEM DESIGN: THE BIG PICTURE

2.4 Meeting the requirements

The console will consist of a viewer and a library of presentation functions—
graphs, bar and pie charts, tables, etc. By means of selection (e.g., ticking
boxes), administrators using the console can select which data to represent
and how to represent it. Thus we achieve the requirements of correlation
and flexibility in presentation.

send shellcode
network emulator for further analysis analysis / classification
adaptor
alerts
adaptor
i-Code
Console

Figure 2.2: Adaptors are responsible for conversion between formats.

The problem is that the formats in which the various detection and
analysis techniques expect their inputs and produce their outputs should
align in order to integrate the data coherently. For new techniques, we
could agree on some common format that is used by all.

The downside of a common format is that it requires a form of standard-
isation, and standardisation procedures are typically lengthy and tedious.
In addition, it precludes the integration of a wealth of existing techniques
never designed with the i-Code console in mind.

Rather than standardising on a common format, i-Code takes a prag-
matic approach, and relies on adaptors to transform data formats from one
component to that of another. Adaptation is illustrated in Figure 2.2, which
zooms in on the top half of Figure 2.1. If the formats happen to coincide,
the adaptor can be very thin, but if not, it will have to handle the type
conversion.

Adaptation occurs both when components export data and events to the
console, and when the console produces data for the components. In some
cases, the console will forward data from one component to another. In that
case, format adaptation between the two components is required.

www.icode-project.eu 12 July 11, 2011

CHAPTER 3

Network-level Emulation

A promising approach for the generic detection of code injection attacks
is to focus on the identification of the shellcode that is indispensably part
of the attack vector, a technique initially known as abstract payload exe-
cution [31]. Identifying the presence of the shellcode itself in network data
allows for the detection of previously unknown attacks without caring about
the particular exploitation method used or the vulnerability being exploited.
Initial implementations of this approach attempt to identify the presence of
shellcode in network inputs using static code analysis [31, 3, 35, 34]. How-
ever, methods based on static analysis cannot effectively handle malicious
code that employs advanced obfuscation tricks such as indirect jumps and
self-modifications.

In i-Code, we take an alternative approach based on dynamic code anal-
ysis using emulation, which is not hindered by such obfuscations and can
detect even extensively obfuscated shellcode [23]. In contrast to previous
approaches that use a single detection algorithm for a particular class of
shellcode, our method relies on several runtime heuristics tailored to the
identification of different shellcode types. We have designed four heuristics
for the detection of plain and metamorphic shellcode targeting Windows
systems.

Polymorphic shellcode is in essence a self-decrypting version of a plain
shellcode, and thus it is also effectively detected, since the concealed plain
shellcode is revealed during execution on the emulator. In fact, we also
enable the detection of polymorphic shellcode that uses SEH-based GetPC
code, which is currently not handled by existing polymorphic shellcode de-
tectors. Each heuristic matches inherent runtime patterns that are always
exhibited during shellcode execution irrespective of its particular implemen-

13

CHAPTER 3. NETWORK-LEVEL EMULATION

Runtime Heuristics

Condition 1
Condition 2
Condition 3

011010110101001 L it

101001101010000 . o)

000011101010001 > —_— > —>» Result
100010100001010 F;

Input Data Virtual Memory

Emulator

Figure 3.1: Network-level shellcode detection system architecture.

tation. Furthermore, instead of solely using a CPU emulator, our approach
couples the heuristics with an appropriate image of the complete address
space of a real process, enabling the correct execution of shellcode that de-
pends on certain kinds of host-level context.

3.1 Architecture

The shellcode detection subsystem of i-Code is built around a CPU emulator
that executes valid instruction sequences found in the inspected input. An
overview of our approach is illustrated in Fig. 3.1. Each input is mapped
to an arbitrary location in the virtual address space of a supposed process,
and a new execution begins from each and every byte of the input, since the
position of the first instruction of the shellcode is unknown and can be easily
obfuscated. The detection engine is based on multiple heuristics that match
runtime patterns inherent in different types of shellcode. During execution,
the system checks several conditions that should all be satisfied in order
for a heuristic to match some shellcode. Moreover, new heuristics for other
shellcode types and OSes can easily be added due to the extensible nature
of the system.

The overall concept can be thought as analogous to the operation of
a typical signature-based intrusion detection system, with some key differ-
ences: each input is treated as code instead of a series of bytes, the detection
engine uses code emulation instead of string or regular expression match-
ing, and each “signature” describes a generic, inherent behavior found in
all instances of a particular type of malicious code, instead of an exploit or
vulnerability-specific attack vector.

www.icode-project.eu 14 July 11, 2011

3.2. RUNTIME HEURISTICS

Existing polymorphic shellcode detection methods focus on the identi-
fication of self-decrypting behavior, which can be simulated using solely a
CPU emulator without any host-level information [24]. For example, ac-
cesses to addresses other than the memory area of the shellcode itself are
ignored. However, shellcode is meant to be injected into a running process
and it usually accesses certain parts of the process’ address space, e.g., for
retrieving and calling API functions. In contrast to previous approaches,
the emulator used in i-Code is equipped with a fully blown virtual mem-
ory subsystem that handles all user-level memory accesses and enables the
initialization of memory pages with arbitrary content. This allows us to
populate the address space of the hypothetical process in the context of
which the inspected input is being executed with an image of the mapped
pages of a process taken from a real system.

The purpose of this functionality is twofold: First, it enables the con-
struction of heuristics that check for memory accesses to process-specific
data structures. Although the heuristics developed within the context of
i-Code target Windows shellcode, and thus the address space image used
in conjunction with these heuristics is taken from a Windows process, some
other heuristic can use a different memory image, e.g., taken from a Linux
process. Second, this allows to some extent the correct execution of non-self-
contained shellcode that may perform accesses to known memory locations
for evasion purposes [4].

The heuristics are orthogonal to each other, which means that more than
one heuristic may match during the execution of an actual shellcode, giving
increased detection confidence. For example, besides the four new heuristics
presented in this paper, we have also incorporated for evaluation purposes a
fifth heuristic similar to the GetPC-based polymorphic shellcode detection
heuristic used in existing detectors [24]. Since any polymorphic shellcode
carries an encrypted version of a plain shellcode, the execution of poly-
morphic shellcode usually triggers both self-decrypting and plain shellcode
heuristics when all five heuristics are enabled.

In the following section, we describe in detail four new detection heuris-
tics for the identification of plain or metamorphic shellcode, egg-hunt shell-
code, as well as polymorphic shellcode that uses SEH-based GetPC code.

3.2 Runtime Heuristics

An effective and robust shellcode detection heuristic should fulfil two op-
posing goals. On one hand, it must be generic enough to capture as many
different implementations of the intended execution behavior as possible in
order to be robust against evasion attempts. On the other hand, it must
be specific enough to precisely describe a large enough set of characteris-

www.icode-project.eu 15 July 11, 2011

CHAPTER 3. NETWORK-LEVEL EMULATION

Abbreviation Matching Shellcode Behavior

PEB kernel32.d11 base address resolution
BACKWD kernel32.d11 base address resolution

SEH Memory scanning / SEH-based GetPC code
SYSCALL Memory scanning

Table 3.1: Overview of the shellcode detection heuristics used in the
emulation-based detector.

tic runtime operations of the shellcode in order to be resilient against false
positives.

Each heuristic used in i-Code is composed of a sequence of conditions
that should all be satisfied in order during the execution of malicious code.
A succeeding condition can thus be satisfied only if the preceding condition
has already been met. Table 3.1 gives an overview of the four heuristics
presented in this section. The heuristics are tailored to the detection of
Windows shellcode, given that the vast majority of code injection attacks
target this platform. They focus on the identification of the first actions of
different shellcode types, according to their functionality, regardless of any
self-decrypting behavior.

3.2.1 Resolving kernel32.dll

The typical end goal of the shellcode is to give the attacker full control of the
victim system. This usually involves just a few simple operations, such as
downloading and executing a malware binary on the compromised host, lis-
tening for a connection from the attacker and spawning a command shell, or
adding a privileged user account. These operations require interaction with
the OS through the system call interface, or in case of Microsoft Windows,
through the user-level Windows API. Although the Native API exposes an
interface for directly calling kernel-level services through ntdl1.d11, it is
rarely used in practice because system call numbers often change between
different Windows versions and Service Packs, and most importantly, be-
cause it does not provide access to network operations which are mandatory
for enabling communication between the attacking and victim hosts.

The Windows API is divided into several dynamic load libraries (DLLs).
Most of the base services such as I/O, process, thread, and memory man-
agement are exported by kernel32.d11, which is always mapped into the
address space of every process. Network operations such as the creation of
sockets are provided by the Winsock library (ws2_.32.d11). Other libraries
commonly used in shellcode include urlmon.d1ll and wininet.d1ll1, which
provide handy functions for downloading files specified by a URL. In order
to call an API function, the shellcode must first find its absolute address

www.icode-project.eu 16 July 11, 2011

3.2. RUNTIME HEURISTICS

in the address space of the vulnerable process, and load any missing dlls.
This can be achieved in a reliable way by searching for the Relative Virtual
Addresses (RVAs) of the function in the Export Directory Table (EDT) of
the DLL.

The functions can be searched either by name, or more commonly, by
comparing hashes of their names, which results to more compact code. The
absolute Virtual Memory Address (VMA) of the function can then be easily
computed by adding the DLL’s base address to the function’s RVA. In fact,
kernel32.d11 provides the quite convenient functions LoadLibrary, which
loads the specified DLL into the address space of the calling process and
returns its base address, and GetProcAddress, which returns the address
of an exported function from the specified DLL. After resolving these two
functions, any other function in any DLL can be loaded and used directly.
However, custom function searching using hashes is usually preferable in
modern shellcode, since GetProcAddress takes as argument the actual name
of the function to be resolved, which increases the shellcode size considerably.

Another method to resolve the required functions relies on the DLL’s Im-
port Address Table (IAT). The shellcode has to first load using LoadLibrary
a DLL that depends on the same set of functions that need to be used in the
shellcode, and then directly reads the VMAs of the required functions from
the IAT. The address of LoadLibrary is again resolved through the EDT.
However, this technique is prone to changes in the offsets of the imported
symbols across different DLL versions.

No matter which method is used, a common fundamental operation in
all above cases is that the shellcode has to first locate the base address of
kernel32.d11, which is guaranteed to be present in the address space of the
exploited process, and from there get a handle to its EDT. After resolving
LoadLibrary, a handle to any other DLL can be easily obtained. Since this
is an inherent operation that must be performed by any Windows shellcode
that needs to call a Windows API function, it is a perfect candidate for
the development of a generic shellcode detection heuristic. In the rest of
this section, we present two heuristics that match the most widely used
kernel32.d11 resolution techniques.

Of course, a naive attacker could hard-code the VMAs of the required
API functions in the shellcode, and call them directly on runtime. This
however would result to highly unreliable shellcode because DLLs are not
always loaded at the same address, and the function offsets inside a DLL
may vary. The increasing use of security measures like DLL rebasing and
address space layout randomization makes the practice of using absolute
memory addresses even less effective. A more radical way of resolving an
APIT function would be to scan the whole address space of the vulnerable
process and locate the actual code of the function, e.g., using a precomputed
hash of its first few instructions. This technique requires a reliable way of
scanning the process address space without crashing in case of an illegal

www.icode-project.eu 17 July 11, 2011

CHAPTER 3. NETWORK-LEVEL EMULATION

1 xor eax, eax ; eax = 0

2 mov eax, fs:[eax+0x30] ; eax = PEB

3 mov eax, [eax+0x0C] ; eax = PEB.LoaderData

4 mov esi, [eax+0x1C] ; esi = InInitializationOrder
ModuleList.Flink

5 1lodsd ; eax = 2nd list entry (kernel32.d11)

6 mov eax, [eax+0x08] ; eax = LDR_MODULE.BaseAddress

Figure 3.2: A typical example of code that resolves the base address of
kernel32.d11 through the PEB.

access to an unmapped page. We discuss heuristics that match this memory
scanning behavior in Sec. 3.2.2.

3.2.1.1 Process Environment Block

Probably the most reliable and widely used technique for determining
the base address of kernel32.d11l takes advantage of the Process Envi-
ronment Block (PEB), a user-level structure that holds extensive process-
specific information. Of particular interest is a pointer to the PEB_LDR_DATA
structure, which holds information about all loaded modules, including a
list of the loaded DLLs in the order they have been initialized. The record
for kernel32.d11 is always present in the second position of the list (after
ntdll.d11), and among its contents is a pointer to the base address where
the DLL has been loaded. By walking through the above chain of data
structures, the shellcode can resolve the absolute address of kernel32.d11
in a reliable way.

Figure 3.2 shows a typical example of PEB-based code for resolving
kernel32.d1l. The shellcode first gets a pointer to the PEB (line 2) through
the Thread Information Block (TIB), which is always accessible at a zero
offset from the segment specified by the FS register. A pointer to the PEB
exists 0x30 bytes into the TIB, as shown in Fig. 3.3. The absolute memory
address of the TIB and the PEB varies among processes, and thus the only
reliable way to get a handle to the PEB is through the FS register, and
specifically, by reading the pointer to the PEB located at address FS: [0x30].

Condition P1. This fundamental constraint is the basis of our first detec-
tion heuristic (PEB). If during the execution of some input the following
condition is true (P1): (i) the linear address of FS: [0£30] is read, and (ii)
the current or any previous instruction involved the FS register, then this
input may correspond to a shellcode that resolves kernel32.d11 through
the PEB.

The second predicate is necessary for two reasons. First, it is useful for
excluding random instructions in benign inputs that happen to read from the
linear address of FS: [0x30] without involving the FS register. For example,

www.icode-project.eu 18 July 11, 2011

3.2. RUNTIME HEURISTICS

if FS: [0x30] corresponds to address 0x7FFDF030 (as shown in the example
of Fig. 3.3), the following code will correctly not match the above condition:

mov ebx, Ox7FFD0000
mov eax, [ebx+0xF030] ; eax = FS:[0x30]

Although the second instruction reads from address 0x7FFDF030, it does
not match the condition because the effective address computation in the
second operand does not involve the FS register. and thus it does not belong
to actual shellcode.

On the other hand, the memory access to FS:[0x30] can be made
through an instruction that does not use the FS register directly. For exam-
ple, an attacker could take advantage of other segment registers and replace
the first two lines in Fig. 3.2 with the following code:

mov ax, fs ; ax = fs

mov bx, es ; preserve es

mov es, ax ; es = fs

mov eax, es:[0x30] ; load FS:[0x30] to eax
mov es, bx ; restore es

The code loads temporarily the segment selector of the FS register to ES
(mov between segment registers is not supported), reads the pointer to the
PEB, and then restores the original value of the ES register.

The linear address of the TIB is also contained in the TIB itself at the
location FS: [0x18], as shown in Fig. 3.3. Thus, another way of reading the
pointer to the PEB without using the FS register in the same instruction is
the following:

XOr eax,eax ; eax = 0
xor eax,fs:[eax+0x18] ; eax TIB address
mov eax, [eax+0x30] ; eax = PEB address

Note in the above example that other instructions besides mov can be used
to indirectly read a memory address through the FS register (xor in this
case). No matter how obfuscated the code is, the condition remains robust
since it does not rely on the execution of particular instructions.

Although condition P1 is quite restrictive, the possibility of encountering
a random read from FS: [0x30] during the execution of some benign input
is not negligible. Thus, it is desirable to strengthen the heuristic with more
operations exhibited by any PEB-based kernel32.d11 resolution code.

Condition P2. Having a pointer to the PEB, the next step of the shellcode
is to obtain a pointer to the PEB_LDR_DATA structure that holds the list
of loaded modules (line 3 in Fig. 3.2). Such a pointer exists 0xC bytes
into the PEB, in the LoaderData field. Since this is the only available
reference to that data structure, the shellcode unavoidably has to read the

www.icode-project.eu 19 July 11, 2011

CHAPTER 3. NETWORK-LEVEL EMULATION

PEB.LoaderData pointer. We can use this constraint as a second condition
for the PEB heuristic (P2): the linear address of PEB.LoaderData is read.

Condition P3. Moving on, the shellcode has to walk through the loaded
modules list and locate the second entry (kernel32.d11). A pointer to the
first entry of the list exists in the InInitializationOrderModulelList.F-
link field located 0x1C bytes into the PEB_LDR_DATA structure. The read
operation from this memory location (line 4 in Fig. 3.2) allows for strength-
ening further the detection heuristic with a third condition.

Although this is the most well known and widely used technique for all
Windows versions up to Windows Vista, it does not work “as-is” for Win-
dows 7. In that version, kernel32.d11 is found in the third instead of the
second position in the modules list. A more generic and robust technique
is to walk through the list and check the actual name of each module until
kernel32.d11 is found. In fact, the PEB_LDR_DATA structure contains two
more lists of the loaded modules that differ in the order of the DLLs. All
three lists are implemented as doubly linked lists, and their correspond-
ing LIST_ENTRY records contain two pointers to the first (Flink) and last
(Blink) entry in the list.

Based on the above, and given that (i) kernel32.d11 can be resolved
through any of the three lists, and (ii) list traversing can be made in both
directions, the third condition of the heuristic can be specified as follows
(P3): the linear address of any of the Flink or Blink pointers in the
InLoadOrderModulelList, InMemoryOrderModuleList, or Ininitializa-
tionOrderModuleList records of the PEB_LDR_DATA structure is read. We
could strengthen further the heuristic with more conditions based on other
subsequent mandatory operations, e.g., the actual read of the BaseAddress
field once the record is found. However, these three conditions are enough
for building a robust detection heuristic without false positives.

3.2.1.2 Backwards Searching

An alternative technique for locating the base address of kernel32.d11
is to find a pointer that points somewhere into the memory area where the
kernel32.d11 has been loaded, and then search backwards until the begin-
ning of the DLL is located [28]. Searching can be implemented efficiently by
exploiting the fact that in Windows, DLLs are loaded only in 64KB-aligned
addresses [28]. The DLL can be identified by looking if the first two bytes
of each 64KB-aligned address are equal to MZ, the beginning of the MS-DOS
header of the DLL, or by checking other characteristic values in the DLL
headers.

A reliable way to obtain a pointer into the address space of kernel32.d11
is to take advantage of the Structured Exception Handling (SEH) mecha-
nism of Windows, which provides a unified way of handling hardware and
software exceptions. When an exception occurs, the exception dispatcher

www.icode-project.eu 20 July 11, 2011

3.2. RUNTIME HEURISTICS

Thread Stack
- 4

0012E000 | 00000000

A4

TIB
e —

FS:0 7EFDFO00 | 0012FFBO » 0012FFBO | 0012FFEQ —
+4 7EEDFO04 | 00130000 0012FFB4 =
+8 7FFDFO08 | 0012E000 l
L Custom
J 0012FFEO | FFFFFFFF | Handler
+18 7FFDFO18 | 7FFDFOOO -1¢ | 0012FFE4 —
»/ 00130000 | 00000000

+30 7TFFDFO30 L l

L @@ — L @@ —

PEB __except_handler3()
(in kernel32.dLll)

Figure 3.3: A snapshot of the TIB and the stack memory areas of a typical
Windows process. The SEH chain consisting of two nodes is highlighted.

walks through a list of exception handlers for the current thread and gives
each handler the opportunity to handle the exception or pass it on to the
next handler. The list is stored on the stack of each thread, and each node is
a SEH frame that consists of two pointers to the next frame and the actual
handler routine. Figure 3.3 shows a typical snapshot of the TIB and the
stack memory areas of a process with two SEH handlers. This mechanism
allows each function to easily install an exception handler that has prior-
ity over the preceding handlers by pushing a new SEH frame on the stack.
A pointer to the current SEH frame exists in the first field of the Thread
Information Block and is always accessible through FS: [0].

At the end of the SEH chain (bottom of the stack) there is a default
exception handler that is registered by the system for every thread. The
Handler pointer of this SEH record points to a routine that is located in
kernel32.d11, as shown in Fig. 3.3. Thus, the shellcode can start from
FS:[0] and walk the SEH chain until reaching the last SEH frame, and
from there get a pointer into kernel32.d11 by reading its Handler field.

Figure 3.4 shows an example of code that uses the above technique [28].
The shellcode has to first get a handle to the current SEH frame through
FS: [0] (line 2), and then walks through the SEH chain (lines 4-8). Starting
from the address pointed to by the Handler field of the last frame (line 9),
the code then searches backwards in 64KB increments for the base address
of kernel32.d11 (lines 10-14).

Another technique to reach the last SEH frame, known as “TOPSTACK” [28],
uses the stack of the exploited thread. The default exception handler is reg-

www.icode-project.eu 21 July 11, 2011

CHAPTER 3. NETWORK-LEVEL EMULATION

1: X0r ecX, ecx ; ecx =0

2: mov esi, fs:[ecx] ; esi = current_frame

3: not ecx ; ecx = Oxffffffff

4: find_last_frame:

5: lodsd ; eax = current_frame->Next

6: mov esi, eax ; esi = current_frame->Next

7: cmp [eax], ecx ; current_frame->Next == Oxffffffff?
8: jne find_last_frame ; if not, continue searching

9: mov eax, [eax + 0x04] ; eax = current_frame->Handler
10: find_kernel32_base:

11: dec eax ; Subtract to previous page

12: Xor ax, ax ; Zero lower half (64KB-align)
13: cmp word [eax], Oxba4d ; are the first 2 bytes == ’MZ’?
14: jne find_kernel32_base ; if not, continue searching

Figure 3.4: Example of code that resolves the base address of kernel32.d11
using backwards searching.

istered by the system during thread creation, making its relative location
from the bottom of the stack fairly stable. Although the absolute address
of the stack may vary, a pointer to the bottom (or the top, when thinking
in terms of the memory layout) of the stack of the current thread is always
found in the second field of the TIB at FS: [0x4]. The Handler pointer of
the default SEH handler can then be found 0x1C bytes into the stack, as
shown in Fig. 3.3. In fact, the TIB contains a second pointer to the top of
the stack at FS: [0x8]. By adding the proper offset, this pointer can also be
used for accessing the default SEH handler, although this approach is less
robust because some applications may have altered the default stack size.

Condition B1. Based on the same approach as in the previous section, the
first condition for the detection heuristic (BACKWD) that matches the
“backwards searching” method for locating kernel32.d11 is the following
(B1): (i) any of the linear address between FS:[0]-FS: [0z8] is read, and
(ii) the current or any previous instruction involved the FS register. The
rationale is that a shellcode that uses the backwards searching technique
should unavoidably read either i) the memory location at FS: [0] for walking
the SEH chain, or ii) one of the locations at FS: [0x4] and FS: [0x8] for
accessing the stack directly.

Condition B2. In any case, the code will reach the default exception record
on the stack and read its Handler pointer. (e.g., as in line 9 in Fig. 3.4).
Since this is a mandatory operation for landing into kernel32.d11, we can
use this dependency as our second condition (B2): the linear address of the
Handler field of the default SEH handler is read.

www.icode-project.eu 22 July 11, 2011

3.2. RUNTIME HEURISTICS

Condition B3. Finally, during the backwards searching phase, the shell-
code will inevitably perform several memory accesses to the address space
of kernel32.d11 in order to check whether each 64KB-aligned address cor-
responds to the base address of the DLL. (e.g., as in line 13 in Fig. 3.4).
In our experiments with typical code injection attacks in Windows XP, the
shellcode performed at least four memory reads in kernel32.d11. Thus,
after the first two conditions have been met, we expect to encounter (B3):
at least one memory read form the address space of kernel32.d1l1.

Note that a more obscure search routine may search for other character-
istic byte sequences in the DLL, and thus the reads may not necessarily be
made at 64KB-aligned addresses. Although the condition can be made more
rigorous by requiring the execution of more than one memory reads within
kernel32.d11, even one read operation is enough for a robust heuristic.

3.2.2 Process Memory Scanning

In the vast majority of code injection exploits, the first step of the shellcode
is to resolve kernel32.d11 and then all required API functions. However,
some memory corruption vulnerabilities allow only a limited space for the
injected code—usually not enough for a fully functional shellcode. In most
such exploits though the attacker can inject a second, much larger payload
which however will land at a random, non-deterministic location, in the
address space of the exploited process, e.g., in a buffer allocated in the
heap. The first-stage shellcode can then sweep the address space of the
process and search for the second-stage shellcode (also known as the “egg”),
which can be identified by a long-enough characteristic byte sequence.

This type of first-stage payload is known as “egg-hunt” shellcode [29].
Egg-hunt shellcode has been used in various remote code injection exploits,
while recently it has found use in malicious documents that upon loading
attempt to exploit some vulnerability in the associated application, making
its effective detection of critical importance.

Blindly searching the memory of a process in a reliable way requires
some method of determining whether a given memory page is mapped into
the address space of the process. In the rest of this section, we describe
two known memory scanning techniques and the corresponding detection
heuristics that can capture these behaviors, and thus, identify the execution
of egg-hunt shellcode.

3.2.2.1 SEH

The first memory scanning technique takes advantage of the structured ex-
ception handling mechanism and relies on installing a custom exception
handler that is invoked in case of a memory access violation.

www.icode-project.eu 23 July 11, 2011

CHAPTER 3. NETWORK-LEVEL EMULATION

Condition S1. As discussed in Sec. 3.2.1.2, the list of SEH frames is stored
on the stack, and the current SEH frame is always accessible through FS: [0].
The first-stage shellcode can register a custom exception handler that has
priority over all previous handlers in two ways: create a new SEH frame
and adjust the current SEH frame pointer of the TIB to point to it [29], or
directly modify the Handler pointer of the current SEH frame to point to
the attacker’s handler routine. In the first case, the shellcode must update
the SEH list head pointer at FS: [0], while in the second case, it has to
access the current SEH frame in order to modify its Handler field, which
is only possible by reading the pointer at FS: [0]. Thus, the first condition
of the SEH-based memory scanning detection heuristic (SEH) is (S1): (i)
the linear address of FS: [0] is read or written, and (ii) the current or any
previous instruction involved the FS register.

Condition S2. Another mandatory operation that will be encountered
during execution is that the Handler field of the custom SEH frame (irre-
spectively if its a new frame or an existing one) should be modified to point
to the custom exception handler routine. This operation is reflected by the
second condition (S2): the linear address of the Handler field in the custom
SEH frame is or has been written. Note that in case of a newly created
SEH frame, the Handler pointer can be written before or after FS: [0] is
modified.

Condition S3. Although the above conditions are quite constraining, we
can apply a third condition by exploiting the fact that upon the registration
of the custom SEH handler, the linked list of SEH frames should be valid.
In the risk of stack corruption, the exception dispatcher routine performs
thorough checks on the integrity of the SEH chain, e.g., ensuring that each
SEH frame is dword-aligned within the stack and is located higher than the
previous SEH frame. Thus, the third condition requires that (S3): starting
from FS:[0], all SEH frames should reside on the stack, and the Handler
field of the last frame should be set to OxrFFFFFFFF. In essence, the above
condition validates that the custom handler registration has been performed
correctly.

3.2.2.2 System Call

Structured Exception Handling has been extensively abused for achieving
arbitrary code execution in various memory corruption vulnerabilities by
overwriting the Handler field of the current SEH frame instead of the re-
turn address, especially after the wide deployment of cookie-based stack
protection mechanisms. This led to the introduction of SafeSEH, a linker
option that produces a table with all the legitimate exception handlers of
the image. When an exception occurs, the exception dispatcher checks if

www.icode-project.eu 24 July 11, 2011

3.2. RUNTIME HEURISTICS

1 push edx ; preserve edx across system call

2 push 0x8

3 pop eax ; eax = NtAddAtom

4 int Ox2e ; system call

5 cmp al, 0x05 ; check for STATUS_ACCESS_VIOLATION
6 pop edx ; restore edx

Figure 3.5: A typical system call invocation for checking if the supplied
address is valid.

the handler function to be called is present in the table, and thus prohibits
the execution of any injected code through a custom or overwritten handler.

The extensive abuse of the SEH mechanism in various memory corrup-
tion vulnerabilities led to the introduction of SafeSEH, a linker option that
produces a table with all the legitimate exception handlers of the image. In
case the exploitation of some SafeSEH-protected vulnerable application re-
quires the use of egg-hunt shellcode, an alternative but less reliable method
for safely scanning the process address space is to check whether a page
is mapped—before actually accessing it—using a system call [29, 28]. As
already discussed, although the use of system calls in Windows shellcode
is not common, since they are prone to changes between OS versions and
do not provide crucial functionality such as network access, they can prove
useful for determining if a memory address is accessible.

Some Windows system calls accept as an argument a pointer to an input
parameter. If the supplied pointer is invalid, the system call returns with
a return value of STATUS_ACCESS_VIOLATION. Thus, the egg-hunt shellcode
can check the return value of the system call, and proceed accordingly by
searching for the egg or moving on to the next address [29]. In Windows, a
system call is initiated by generating a software interrupt through the int
0x2e instruction.

Figure 3.5 shows a typical code that checks the address stored in edx
using the NtAddAtom system call. In Windows, a system call is initiated by
generating a software interrupt through the int 0x2e instruction (line 4).
The actual system call that is going to be executed is specified by the value
stored in the eax register (line 3). Upon return from the system call, the code
checks if the return value equals the code for STATUS_ACCESS_VIOLATION.
The actual value of this code is 0xC0000005, but checking only the lower
byte is enough in return for more compact code (line 5).

Condition C1. System call execution has several constraints that can be
used for deriving a detection heuristic for this kind of egg-hunt shellcode.
First, the immediate operand of the int instruction should be set to 0x2E.
Looking just for the int 0x2e instruction is clearly not enough since any
two-byte instruction will be encountered roughly once every 64KB of arbi-

www.icode-project.eu 25 July 11, 2011

CHAPTER 3. NETWORK-LEVEL EMULATION

trary binary input. However, when encountering an int 0x2e instruction
that corresponds to an actual system call execution, the ebx register should
also have been previously set to the proper system call number.

The publicly available egg-hunt shellcode implementations we found use
one of the following system calls: NtAccessCheckAndAuditAlarm (0x2),
NtAddAtom (0x8), and NtDisplayString (0x39 in Windows 2000, 0x43 in
XP, 0x46 in 2003 Server, and 0x7F in Vista). The variability of the system
call number for NtDisplayString across the different Windows versions is
indicative of the complexity introduced in an exploit by the direct use of sys-
tem calls. Based on the above, a necessary condition during the execution
of a system call in egg-hunt shellcode is (C1): the execution of an int Oz2e
instruction with the eax register set to one of the following values: 0x2, 0z8,
0239, 0x43, 0x46, Ox7F.

Condition C2. Condition C1 alone can happen to hold true during the
execution of random code, although rarely. The shellcode should perform
a mandatory check for the STATUS_ACCESS_VIOLATION return value, but we
cannot specify a robust condition for this operation since the comparison
code can be easily obfuscated. However, the heuristic can be strengthened
based on the following observation. The egg-hunt shellcode will have to scan
a large part of the address space until it finds the egg. Even when assuming
that the egg can be located only at the beginning of a page, the shellcode
will have to search hundreds or thousands of addresses, e.g., by repeatedly
calling the code in Fig. 3.5 in a loop. Hence, during the execution of an egg-
hunt shellcode, condition C1 will hold several times. The detection heuristic
(SYSCALL) can then be defined as a meta-condition (C{N}): C1 holds
true N times. Based on our analysis, a value of N = 2 does not produce any
false positives.

In case other system calls can be used for validating an arbitrary address,
they can easily be included in the above condition. Starting from Windows
XP, system calls can also be made using the more efficient sysenter in-
struction if it is supported by the system’s processor. The above heuristic
can easily be extended to also support this type of system call invocation.

3.2.3 SEH-based GetPC Code

Before decrypting itself, polymorphic shellcode needs to first find the ab-
solute address at which it resides in the address space of the vulnerable
process. The most widely used types of GetPC code for this purpose rely
on some instruction from the call or fstenv instruction groups [24]. These
instructions push on the stack the address of the following instruction, which
can then be used to calculate the absolute address of the encrypted code.
However, this type of GetPC code cannot be used in purely alphanumeric
shellcode [20], because the opcodes of the required instructions fall outside
the range of allowed ASCII bytes. In such cases, the attacker can follow

www.icode-project.eu 26 July 11, 2011

3.2. RUNTIME HEURISTICS

a different approach and take advantage of the SEH mechanism to get a
handle to the absolute memory address of the injected shellcode.

When an exception occurs, the system generates an exception record that
contains the necessary information for handling the exception, including a
snapshot of the execution state of the thread, which contains the value of the
program counter at the time the exception was triggered. This information
is stored on the stack, so the shellcode can register a custom exception
handler, trigger an exception, and then extract the absolute memory address
of the faulting instruction. By writing the handler routine on the heap, this
technique can work even in Windows XP SP3, bypassing any SEH protection
mechanisms.

In essence, the SEH-based memory scanning detection heuristic described
in Sec. 3.2.2.1 does not identify the scanning behavior per se, but the proper
registration of a custom exception handler. Although this is an inherent op-
eration of any SEH-based egg-hunt shellcode, any shellcode that installs a
custom exception handler can be detected, including polymorphic shellcode
that uses SEH-based GetPC code.

www.icode-project.eu 27 July 11, 2011

CHAPTER 3. NETWORK-LEVEL EMULATION

www.icode-project.eu 28 July 11, 2011

CHAPTER 4

Shellcode Analysis and Classification

4.1 Shellcode Analysis and Collection Architec-
ture

As a first step in the study of shellcodes that are being used by attackers in
the wild, we will need to develop an infrastructure for collecting shellcode
samples from diverse sources. Previous work on the analysis and classifica-
tion of shellcode [18] has concluded that the variety of shellcode observed
in the wild is extremely limited. We argue that this conclusion is largely
a consequence of the limitations of the shellcode collection techniques de-
ployed by the authors. Specifically, the authors of [18] collected network
traces of communication with server honeypots, and detected and extracted
shellcodes using Shield [33]. This approach, however, suffers from three sig-
nificant limitations. The first limitation is related to the class of attacks
observed by server honeypots: Server honeypots are completely blind to all
client-side attacks. Since client-side attacks are now the biggest threat to
internet security [2], this is an important limitation. The second limitation
is intrinsic in attempting to extract shellcodes from network traces. It can
be difficult or in some cases impossible to obtain the shellcode contained in
a network trace; for instance, if the shellcode is fragmented across protocol
packets, enclosed within an encrypted stream, or hidden inside obfuscated
Javascript within a PDF document. The final limitation is that Shield can
only detect attacks against known vulnerabilities based on a set of signa-
tures. This further limits the variety of shellcodes that can be collected to
those for which a signature has been written by a human analyst.

To overcome these limitations and attempt the largest and most di-
verse shellcode collection effort to date, we plan to employ a flexible, loosely

29

CHAPTER 4. SHELLCODE ANALYSIS AND CLASSIFICATION

structured infrastructure that can receive shellcodes collected with arbitrary
detection tools. At the center of this infrastructure is a generic shellcode
behavioral analysis tool, that will be discussed in Section 4.2. This tool will
offer an easy-to-use web interface for submitting shellcodes as raw binary
blobs. This interface will be open to the public. Thus, anyone will be able
to submit a shellcode they have collected to our analysis infrastructure. In
return, submitters will obtain a report on the behavior of the submitted
shellcode within our analysis sandbox, as discussed in Section 4.2. The goal
of this collection effort is to assemble samples of shellcode obtained from
three broad classes of sensors:

Server Honeypots. These are systems deployed on the network with the
purpose of acting as network servers and being exploited by network
attacks. This class of sensors can fall victim to the same class of attacks
discussed in [18]. However, unlike [18] we are not limited to extracting
shellcodes for known attacks from network traces. Modern honeypot
technology, such as Argos [25], can use fine-grained instrumentation
and techniques such as dynamic data tainting to perform host-level,
0-day detection of exploitation attempts.

Client Honeypots. These are systems that act like network clients, and
attempt to detect malicious content such as malicious web sites or
documents by crawling the web or processing the content of SPAM
emails. For detection, these systems can rely on a variety of technolo-
gies [11, 27, 22, 32|, but can also employ techniques similar to the ones
employed by server honeypots such as Argos.

Network-level Detectors. These are detectors that operate at the net-
work level, and are able to recognize shellcode in the raw network
traffic. This is typically based on some form of emulation, as is the
case for Nemu and for its extensions discussed in Chapters 3 and 6.
Clearly, we plan to integrate the shellcode detection tools developed
and deployed within i-Code into our shellcode collection and analysis
effort. Thus, shellcodes detected on the network by the i-Code tools
will be automatically submitted for analysis.

To maximize the amount and diversity of the shellcodes that we collect,
rather than simply rely on user submissions, we plan to collaborate with the
operators and developers of server and client honeypots deployed within and
without the i-Code consortium, to automate the submission of shellcodes
from the largest possible number of honeypots.

www.icode-project.eu 30 July 11, 2011

4.2. BEHAVIORAL ANALYSIS AND UNPACKING

4.2 Behavioral Analysis and Unpacking

Once a shellcode is submitted, it will be subjected to dynamic analysis,
with the goal of observing the intended behavior of the attack. For this,
the first step is to wrap the raw submitted code into an executable format.
Then, the shellcode can be executed inside an instrumented and sandboxed
virtual environment. For this second step we plan to employ a modified
and extended version of the Anubis malware analysis tool [6, 1, 5]. Anubis
is a dynamic malware analysis system based on an instrumented Qemu [7]
emulator. It is offered as an open service through a public website, where
users can submit binaries for analysis, and receive a report that describes
the behavior of the sample in a human-readable way. We plan to follow the
same approach for shellcode analysis. For this, the behavioral report will be
enriched with shellcode-specific information. For instance, the report will
include a high-level description of the method used by the shellcode to con-
solidate the attacker’s presence on an exploited system, such as downloading
and installing a binary or creating a user for the attacker.

In addition to a behavioral report similar to the one produced by Anubis,
this tool will detect the shellcode’s unpacking behavior and dump the un-
packed code. This step is essential for analysing the phylogeny of shellcode
by means of the classification techniques discussed in the following Section.

4.3 Shellcode Classification

Once the behavioral analysis phase has dumped an unpacked version of a
shellcode’s code, we can use static techniques to further analyse this code. In
particular, we are interested in studying the variety of the shellcodes avail-
able in the wild, and their phylogeny. To what extent are similar shellcodes
employed in exploits of different vulnerabilities? Do attackers write their
own shellcodes or mostly rely on exploitation tools such as metasploit'? Do
client and server-side exploits employ different shellcodes? To be able to
answer such questions, we require a way to perform unsupervised classifica-
tion (or clustering) of the collected shellcodes. For this, we plan to employ
techniques based on the static analysis of the unpacked code, similar to the
ones employed by Ma et al. [18]. In particular, we plan to refine the code
comparison techniques based on the CFG-based code fingerprinting from
Kruegel et al. [17].

"http://www.metasploit.com/

www.icode-project.eu 31 July 11, 2011

http://www.metasploit.com/

CHAPTER 4. SHELLCODE ANALYSIS AND CLASSIFICATION

www.icode-project.eu 32 July 11, 2011

CHAPTER D

Behaviour-based Detection of Malcode

5.1 Motivation

Given the importance and the security impact of malware, it is not surpris-
ing that there exists a significant body of research, both in the scientific
community and the commercial world, on ways to protect machines from
becoming infected and on techniques to detect and contain malware pro-
grams once they are on the host. The most popular approach to identify
malware is based on signatures. These signatures are typically byte strings
(or instruction sequences) that are characteristic for a particular malware
instance or a family of malicious code [30]. Unfortunately, code obfuscation
and polymorphism have long proved to be effective tools in the arsenal of a
malware author to evade signature-based detection.

To address the limitations of signature-based detection techniques, beha-
vior-based detection was introduced as a novel approach to identify malicious
code [9, 16]. Behavior-based detectors do not examine the (static) content
of a binary, but rather focus on the (dynamic) actions that the program
performs, or might perform. The idea is that even when the syntactic lay-
out of the program is different, the semantics of the code should remain
unchanged between polymorphic variants of the same malware (or even,
between different members of the same malware family).

Arguably the most popular way to characterize the behavior of programs
is based on some kind of analysis of the system calls (or Win32 API func-
tions) that a program invokes; or that it can invoke, in case the code is
examined statically. Various models range from looking at sequences of sys-
tem calls [21], over bags of system calls [14], to system call patterns based

33

CHAPTER 5. BEHAVIOUR-BASED DETECTION OF MALCODE

on data flow dependencies [19, 16]. Yet other techniques look at individual
system calls, but take into account argument information [15].

In most cases, authors achieved good results with system-call-based mal-
ware detectors, and they reported high success rates with low numbers of
false positives. However, a closer examination of the presented results re-
veals that most experiments are performed on a relatively small scale. In
particular, this is true for the analysis of false positives. That is, authors
collect traces only for a small set of benign applications. In addition, these
programs are exercised in a limited fashion, often using synthetic inputs or
launching simple test cases. As a result, it is not clear whether the observed
system call traces produced by these benign applications are representative
for the diverse set of applications that is used by actual users. Moreover,
in most cases, the experiments are performed on a single machine. It is not
clear how the detection results will generalize to a larger installation base.
Thus, the reported number of false positives might be underestimated.

5.2 Data Collection

During the first part of the project, we set out to analyze the diversity of
system call information and the robustness of simple detection techniques
when looking at data that is collected on a larger scale. To this end, we
developed a light-weight system call collection module that was installed on
ten machines that were used by people to carry out their normal activities.
Over a period of several weeks, these modules collected more than 1.5 billion
system calls that were invoked by 362 thousand operating system processes.
In total, we observed 242 different applications.

Our analysis of the collected data shows that there is a large diversity
in the system calls that benign programs invoke. This makes it difficult for
system-call-based detectors to establish a concise model of normality that
allows for a clean separation between acceptable and malicious behavior.
In other words, the fact that a previously unseen system call sequence is
observed is not a good indication that the process is malicious. It might
just be that an existing application is used in an unexpected fashion, or
that a new, benign application is installed.

In this section, we discuss our efforts to collect a large and diverse set
of system call traces. Our requirements are geared towards imposing the
least impact on the users whose machines are part of the data collection
effort. Thus, the data collection framework must have minimal impact on
the performance of those machines, must operate with and without network
connectivity, must ensure that private information does not leave the user’s
machines, and must make almost no assumptions about the run-time envi-
ronment. For example, requiring that users make use of virtual machines
would significantly restrict the practical applicability of our data collection.

www.icode-project.eu 34 July 11, 2011

5.2. DATA COLLECTION

Program System call n Arguments Oul Return value
SVCHOST.EXE NtCreateFile 131208,..\ACGENRAL.DLL’,... 2600 O
SVCHOST.EXE NtQueryInformationFile 2600,6,0 -144573084
SVCHOST.EXE NtClose 1004 0
CLIENT.EXE NtClose 1560 0
CLIENT.EXE NtCreateNamedPipeFile 2148532480,’..\NamedPipe’,... 288 0
CLIENT.EXE NtOpenFile 1074790528,’..\NamedPipe’,... 264 0

firefox.exe NtReleaseSemaphore 404 0

firefox.exe NtReadFile 780 0

Figure 5.1: Sample system-call log. Due to formatting constraints, some
values are abbreviated and the timestamp, process ID, and parent process
ID fields are not shown.

Additionally, the data collection framework must be capable of extracting
a rich set of attributes for each event (i.e., system call) of interest. Unfor-
tunately, none of the existing system call tracing tools satisfy these require-
ments, so we built and deployed our own data collection framework.

Our system consists of software agents, which, once installed on user’s
machines, automatically collect, anonymize, and upload system call logs,
and a central data repository, which receives logs from each machine and
normalizes the data in preparation for further analysis. The software agents
can be installed by users on their own machines and are mindful of system
load, available disk space, and network connectivity. Furthermore, users can
enable and disable the collection agent as they wish.

Data description. We are interested in performing different types of
analyses on the collected data. Thus, the data elements collected for each
system call must allow analyses along many dimensions. For each system
call we collect its arguments, its result (return) code, the process ID, the
process name, and the parent process ID. Each log entry is a tuple (see an
example in Figure 5.1):

(timestamp, program, pid, ppid, system call, args, result)

This data allows us to perform our analyses within a single process, across
multiple executions of the same program, or across multiple programs.

5.2.1 Raw Data Collection

The software agent that collects data is a real-time component running on
each user’s machine. This agent consists of a data collector and a data
anonymizer. We implemented our agent for Microsoft Windows, as it is the
OS targeted the most by malware. The description in the remainder of this
section provides details specific to the Microsoft Windows platform. The
data collector is a Microsoft Windows kernel module that traces system call
events and annotates them with additional process information. The data
anonymizer transforms the collected system call data according to privacy

www.icode-project.eu 35 July 11, 2011

CHAPTER 5. BEHAVIOUR-BASED DETECTION OF MALCODE

rules and uploads it to the remote, central data repository.

Kernel collector. The main goal of this component is to collect system
call and process information across the entire system. In order to intercept
and log system call information, the kernel data collector hooks the SSDT
table [13]. The kernel collector logs information for 79 different system calls
in five categories: 25 related to files, 23 related to registries, 25 to processes
and threads, one related to networking, and five related to memory sections.
We select the same subset of 79 syscalls already used in Anubis [1] which
covers the relevant operations that manipulate persistent OS resources as
well.

A challenge arises from the fact that the kernel collector does not nec-
essarily observe the start of a new process. One reason is that the user can
disable and re-enable the software agent at any point. Another reason is that
the kernel collector is started as the last kernel module in the system boot
process. This means that the kernel collector might observe system calls
that refer to previously acquired resource handles, but without having any
information about which resources those handles point to. As a special case,
some resource handles (e.g., handles to the registry roots) are automatically
provided to a process by the OS at process-creation time. Consequently, if
we log only the parameters for each individual system call that we observe,
we lose information about previously (or automatically) acquired resources.
To address this problem, we query the open handler table for each process
we have not seen before. This allows the kernel collector to retrieve the
open objects already associated with a new process. We store the path
names of these objects for later use when we intercept a system call (such
as NtOpenKey) that references a pre-existing handle.

Log anonymizer. To protect the privacy of our users, we obfuscate or
simply remove arguments of various system calls before sending the log to
the data repository. The obfuscation consists of replacing part or whole of
a sensitive argument value with a randomly-generated value. Every time
a value repeats, it is replaced with the same randomly-generated value, so
that we can recover correlations between system call arguments. We con-
sider as sensitive all arguments whose values specify non-system paths (e.g.,
paths under C:\Documents and Settings are sensitive), all registry keys
below the user-root registry key (HKLM), and all IP addresses. Furthermore,
we remove all buffers read, written, sent, or received, thus both providing
privacy protection and reducing the communication to the data repository.
The data repository indexes the logs by the primary MAC address of each
machine.

Impact on performance. We designed the software agent to minimize
the overhead on users’ activities. The kernel module collects information

www.icode-project.eu 36 July 11, 2011

5.2. DATA COLLECTION

only for a small subset of 79 system calls. Log are saved locally and pro-
cessed out of band before being sent to the server, when network connectivity
is available. Users can turn data collection on and off, based on their needs.
Local logs are uploaded to the repository when they reach 10 MB in size
and logging is automatically stopped if available disk space drops below the
100 MB threshold. Each 10 MB portion of the system call log is compressed
using ZIP compression, for an 95% average reduction in size (from 10 MB
to 500 KB). Given these techniques, we are confident that users were able to
use their computers with the data collector present as they would normally
do, and thus the collected system call logs are representative of day-to-day
usage.

5.2.2 Data Normalization

The purpose of this component is to process the raw system call logs and
extract the fully qualified names of the accessed resources as well as the
access type. For files and directories, the fully qualified name is the absolute
path, while for registry keys, it is the full path from one of the root keys.

To compute fully qualified resource names, we track for each process
the set of resources open at any given time, via the corresponding set of OS
handles. When a resource (file or registry key) is accessed relative to another
resource (either opened by the process or opened by the OS automatically
for the process), we combine the resource names to obtain a fully qualified
name. Symlinks are handled observing the actual open operation of the
target (linked) file. To handle the hardlinks we include the locations (paths)
of all hard-linked aliases of a file.

Computing the access type (e.g., read, write, or execute) requires track-
ing the access operations performed on a resource. This is more tricky than
expected. When a resource is acquired by a program (e.g, a file is opened),
the program specifies a desired level of access. This information, however, is
not sufficiently precise for our needs. This is because, often, programs open
files and registry keys at an access level beyond their needs. For example,
a program might open a file with FULL_ACCESS (i.e., both read and write
access), but afterward, it only reads from the file. Since we are interested in
the actual access type, we track all of the operations on a resource, and only
when the resource is released (on NtClose), we compute the access type as
a union of all operations at all on the resource. If the program performs
no operations on a resource, then we use the initially-requested access (pro-
vided at resource acquisition) as actual access. Such an heuristic is used for
the memory-mapped files. With such files, we might not see any read/write
operation at the system call level, although the file is accessed.

In Microsoft Windows, there is no single system call that starts a new
process from a given executable file. In order to retrieve the execution path
and file name, the normalizer needs to recognize the NtOpenFile system

www.icode-project.eu 37 July 11, 2011

CHAPTER 5. BEHAVIOUR-BASED DETECTION OF MALCODE

Machine éag; Sy?t:%(jc)alls P(r zcleg;f s Applications
1 18.0 285 55.1 90

2 4.5 70 22.4 87

3 5.6 89 17.7 46

4 32.0 491 110.9 41

5 34.0 514 125.6 42

6 14.0 7 2.8 73

7 1.3 19 3.7 49

8 1.2 18 3.0 22

9 1.6 27 8.5 47
10 2.3 36 12.9 26
Total 114.5 1,556 362.6 242

Table 5.1: Characteristics of our data set.

calls that belong to the process-creation task. When a process is created,
the OS executes a set of system calls to allocate resources, load the binary
executable, and start the new process: NtOpenFile, NtCreateSection with
desired executable access, and NtCreateThread. Consequently, we automat-
ically identify occurrences of this pattern and extract the executable path
and file name.

5.2.3 Experimental Data Set

We deployed our data collection framework on ten different machines, each
belonging to a different user, all running Microsoft Windows XP. The users
have different levels of computing expertise and different computer usage
patterns. Based on use, the machines can be classified as follows: two were
development systems, one was an office system, one was a production system,
four were home PCs, and one was a computer-lab machine.

Overall we collected 114.5 GB of data, consisting of 1.556 billion of sys-
tem calls, from 362,600 processes and 242 distinct applications. 5.1 provides
detailed information for each machine.

Our system collected data from each machine at an average rate of
8.2 MB/minute, with highly used machines producing logs at 40 MB/minute
and idle machines producing 1.5 MB/minute. In 5.2, we report the logging
time for the ten different machines. For each machine, we show the ma-
chine’s usage profile, the size of data collected, the total time during which
data was actually collected, the time period between the first log entry and
the last log entry, and the average data rate. For example, the fourth row
indicates that machine 4 was a production server that generated 32 GB of
system call logs, over a period of 3 days, during which data collection was

www.icode-project.eu 38 July 11, 2011

5.3. SYSTEM DESIGN

Time
Machine | Usage Data Logged Total Data rate

(GB) (hours) (days) (MB/minute)
1 office 18.0 12 3 8
2 home 4.5 4 3 6.25
3 home 5.6 3 4 7.77
4 prod. 32.0 12 3 14
5 prod. 34.0 12 3 15
6 lab 14.0 8 3 11
7 home 1.3 3 2 4
8 home 1.2 3 2 4
9 dev. 1.6 2 2 6
10 dev. 2.3 2 3 6.4

Table 5.2: Data rates during collection.

active for 12 hours. Our training data included every OS task that happened
during the monitoring period, including software installation and updates.

5.3 System Design

Now that we collected a large amount of examples of benign behavior, we
can compare them with the known malicious behavior exhibited by malware
programs under Anubis. To goal is to try to determine if there is any
significant difference that can be used to distinguish the ones from the others.

In particular, we plan to run two sets of experiments. First we want
to evaluate known program-centric detection models (based, for example,
on sequences of system calls) to see how they perform on a real and large
dataset. Second, we want to implement a system-centric approach to see if
it can achieve a better detection rate without raising false positives.

In the rest of the Section we describe the design of the system-centric
approach we have in mind.

5.3.1 System-Centric Approach to Detect Malicious Behav-
ior

In this section, we propose the design of model that attempts to abstract
from individual program runs and that generalizes how, in general, benign
programs interact with the operating system. For capturing these inter-
actions, we focus on the file system and the registry activity of Microsoft
Windows processes. More precisely, we record the files and the registry
entries that Windows processes read, write, and execute (in case of files
only). It is possible to integrate other kinds of interactions into our model
(in particular, the network), but we leave this for future work.

www.icode-project.eu 39 July 11, 2011

CHAPTER 5. BEHAVIOUR-BASED DETECTION OF MALCODE

Our model is based on a large number of runs of a diverse set of applica-
tions, and it combines the observations into a single model that reflects the
activities of all programs that are observed. For this to work, we leverage
the fact that we see “convergence.” That is, even when we build a model
from a subset of the observed processes, the activity of the remaining pro-
cesses fits this model very well. Thus, by looking at program activity from
a system-centric view—that is, by analyzing how benign programs interact
with the OS—we can build a model that captures well the activity of these
programs. Of course, this would not be sufficient by itself. To be useful, our
model must also be able to identify a reasonably large fraction of malware.
Note that it is also possible that program-centric models converge at one
point. However, the results presented in the previous section indicate that
a large amount of data is needed before this point is reached; more than we
collected in our experiments, and definitely more than previous research has
used to demonstrate that system-call-sequence-based detection works.

5.3.2 Creating Access Activity Models

To capture normal (benign) interactions with the file system and the Win-
dows registry, we propose access activity models. An access activity model
specifies a set of labels for operating system resources. In our case, the OS
resources are directories in the file system and sub-keys in the registry (sub-
keys are the equivalent of directories in the file system). In the following,
we refer to directories and sub-keys as folders.

Note that we do not specify labels directly on files or registry entries. The
reason for this was that the resulting models are significantly smaller when
looking at folders only. As a result, the model generation process is faster
and “converges” quicker (i.e., less training data is required to build stable
models). Moreover, in almost all cases, the labels for the folder entries (files
or registry keys) would be similar to the label for that folder itself. Thus,
the sacrifice in precision was minimal.

A label L is a set of access tokens {tg,t1,...,t,}. Each token t is a pair
(a, op). The first component a represents the application that has performed
the access, the second component op represents the operation itself (that is,
the type of access).

In our current system, we refer to applications by name. In principle,
this could be exploited by a malware process that decides to reuse the name
of an existing application (that has certain privileges). In the future, we
could replace application names by names that include the full path, the
hash of the code that is being executed, or any other mechanism that allows
us to determine the identity of the application that a process belongs to.
In addition to specific application names, we use the star character (*) as a
wildcard to match any application.

www.icode-project.eu 40 July 11, 2011

5.3. SYSTEM DESIGN

The possible values for the operation component of an access token are
read, write, and execute for file-system resources (directories), and read
and write for registry sub-keys.

Initial access activity model. An initial access activity model precisely
reflects all resource accesses that appear in the system-call traces of all be-
nign processes that we monitored (we call this data set the training data).
Note that for this, we merge accesses to resources that are found in different
traces and even on different Windows installations. In other words, we build
a “virtual” file system and registry that contains the union of the resources
accessed in all traces.

Whenever an application proc opens or reads from an existing file foo
in directory C:\path\dir, we insert the directory dir into our “virtual”
file system, including all directories on the path to dir. When a prefix
of the directories along path already exist in our virtual file system, then
these directories are re-used. All directories that are not already present
(including dir) are added to the virtual file system tree. Then, we add the
access token (proc,read) to the label associated with dir.

When a process creates or deletes a file in a directory dir, or when it
writes to a file, then we use the operation write for the access token. Similar
considerations apply for read and write operations that are performed on the
registry. Finally, whenever a binary is executed (loaded by the OS loader),
then we add a token with execute to the directory that stores this binary.

For example, consider that file C:\dir\foo is read by pA on machine
A, and that file C:\dir\sub\bar is written by pB on another machine B.
Then, the resulting virtual file system tree would have C:\ as its root node.
From there, we have a link to the directory dir, which in turn has a link to
sub. The label associated with dir is (pA, read), and the label associated
with sub is (pB, write).

Pre-processing. Before model generation can proceed, there are two ad-
ditional pre-processing steps that are necessary. First, we need to remove a
small set of benign processes that either read or execute files in many folders.
The problem is that these applications appear in many labels and could lead
to an access activity model that is less tight (restrictive) than desirable. We
found that such applications fall into three categories: Microsoft Windows
services (such as Windows Explorer or the command shell) that are used to
browse the file system and launch applications; desktop indexing programs;
and anti-virus software. The number of different applications that belong
to these categories is likely small enough so that a manually-created white
list could cover them. In our system, we remove all applications that read
or execute files in more than ten percent of the directories. We found a
total of 15 applications that fit this profile: nine Windows core services, two
desktop indexing applications, and six anti-virus (AV) programs. Identify-

www.icode-project.eu 41 July 11, 2011

CHAPTER 5. BEHAVIOUR-BASED DETECTION OF MALCODE

ing such applications automatically is reasonable, because we assume that
our training data does not contain malicious code. However, the number of
white-listed applications is so small that the entries can be easily verified
manually.

The second pre-processing step is needed to identify applications that
start processes with different names. We consider that two processes with
different names belong to the same application when their executables are
located in the same directory. We have found 14 applications that start
multiple processes with different names. These include well-known appli-
cations such as MS Office, Messenger, Skype, and RealPlayer. Of course,
all Windows programs that are located in C:\Windows\system32 are also
aggregated (into a single meta-application that we refer to as win_core).
Merging processes that have different names but that ultimately belong to
the same application is useful to create tighter access activity models.

Model generalization. Based on the initial access activity model, we
perform a generalization step. This is needed because we clearly cannot
assume that the training data contains all possible programs that can be
installed on a Windows system, nor do we want to assume that we see all
possible resource accesses of the applications that we observed. Also, the
initial model does not contain labels for all folders (recall that the access is
only recorded for the folder that contains the accessed entity).

The generalization step performs a post-order traversal of both the vir-
tual file system tree and the virtual registry tree. Whenever the algorithm
visits a node, it performs the following four steps:

Step 1: First, the algorithm checks the children of the current node to
determine whether access tokens can be propagated upward in the tree. In-
tuitively, the idea is that whenever we inspect a folder (node) and observe
that all its sub-folders are accessed by a single application only, we assume
that the current folder also belongs to this application.

More formally, the upward propagation rule works as follows: For each
operation op, we examine the labels of all child nodes and extract the access
tokens that are related to op. This yields a set of access tokens {¢1,...,t,}.
We then inspect the applications involved in these accesses (i.e., the first
component of each token ¢;). When we find that all accesses were performed
by a single application proc, we add the access token (proc, op) to the current
label.

Step 2: The upward propagation rule of Step 1 is used to identify parts of
the file system or the registry that belong to a single application. However,
this is problematic when considering container folders. A container is typi-
cally a directory that holds many “private” folders of different applications.
A private folder is a folder that is accessed by a single application only
(including all its sub-folders). A well-known example of a container is the

www.icode-project.eu 42 July 11, 2011

5.3. SYSTEM DESIGN

directory C:\Program Files, which stores the directories of many Windows
programs.

Since a container holds folders owned by many different applications, its
label would deny access to all sub-folders that were not seen during training.
This might be more restrictive than necessary. In particular, we would like
to ensure that whenever an application accesses a previously-unseen folder
in a container, this should be allowed. Intuitively, the reason is that this
access follows an expected “pattern,” but the specific folder has not been
seen during training. To handle these cases, we introduce a special flag that
can be set to mark a folder as a container.

The following rule is used to mark a folder as a container: Similar to
before, we examine the labels of all child nodes and extract the access tokens
that are related to each operation op. We then inspect the set of access
tokens that is extracted {t1,...,t,}. When the applications in these accesses
are different, but there is mo wildcard present in any access token, then the
folder is marked as container.

Step 3: Next, the access tokens in the label associated with the current
node are merged. To this end, the algorithm first finds all access tokens
that share the same operation op (second component). Then, it checks
their application names (first components). When all tokens share the same
application name, they are all identical, and we keep a single copy. When
the application names are different, or one token contains the wildcard,
then the tokens are replaced by a single token in the form (x,op). Merging
is useful to generalize cases in which we have seen multiple applications that
perform identical operations in a particular folder, and we assume that other
applications (which we have not seen) are also permitted similar access.

Step 4: Finally, the algorithm adds access tokens that were likely missed
because of the fact that the training data is not complete. More precisely,
for each access token that is related to a write operation, we check whether
there exists a corresponding read token. That is, for all applications that
have written to a folder, we check whether they have also performed read
operations. If no such token can be found, we add it to the label. The
rationale for this step is that an application that can write to resources in a
folder can very likely also perform read operations. While it is possible to
configure files and directories for write-only access, this is very rare. On the
other hand, adding read tokens allows us to avoid false positives in the more
frequent case where we have simply not seen (legitimate) read operations in
the training data.

When the generalization algorithm completes, all nodes in the virtual
file system and the registry tree have a (possibly empty) label associated
with them.

Note that, for building the access activity model, we do not require any
knowledge about malicious processes. That is, the model is solely built

www.icode-project.eu 43 July 11, 2011

CHAPTER 5. BEHAVIOUR-BASED DETECTION OF MALCODE

from generalizing observed, good behavior. This is an advantage compared
to the n-gram model introduced in the previous section, which requires
training traces captured from malware runs to identify those n-grams that
are unique to benign applications.

www.icode-project.eu 44 July 11, 2011

CHAPTER 6

A Scaleable 1/O Architecture

Network-level attack detection systems have a hard time keeping up with
link rates. We have already seen that this is true for Nemu (Chapter 3), but
also for other intrusion detection techniques, it becomes increasingly hard
to keep up with network speeds.

In i-Code, we develop an I/O architecture to help speed up network-
based intrusion detection systems, by reducing the OS bottlenecks in ac-
cessing and processing network traffic. Specifically, our design will reduce
overhead due to copying, context switching, signalling, and cache invalida-
tions.

Our design builds on Streamline [12], but we aim to make it more usable
for general IDS applications. To do so we need to implement a proper
TCP/IP stack on top of the Streamline buffer management system. In the
remainder of this section, we sketch the design as well as how it will be
extended in i-Code.

6.1 Bottlenecks in network processing

The bottleneck in system software has moved from the CPU to the memory
system, especially for I/O-intensive tasks such as networking. Operating
systems have not structurally changed to reflect this reality, with the re-
sult that architectural decisions made in the past hinder applications today.
They waste CPU cycles copying data between kernel subsystems and across
memory protection boundaries. They waste cycles switching tasks too fre-
quently. To make matters worse, they waste cycles refreshing caches as a
result of all this copying and context switching.

45

CHAPTER 6. A SCALEABLE I/O ARCHITECTURE

An application binary interface (ABI) at the abstraction level of Posix
calls incurs many mode switches between userspace and kernel mode by
handling packets one at a time; multi-user OS access control imposes copy
semantics across memory protection domains even on dedicated (i.e., sin-
gle user) servers. These inefficiencies result from fundamental architecture
choices and can only be resolved through comprehensive OS restructuring.
Failure to resolve the issues systematically has led to application-specific
solutions, such as disk caches duplicated in userspace (in server-side script
engines) or kernelspace application servers. This road is far from ideal, as
it increases code complexity, memory- and CPU utilization, and reduces
robustness.

An I/0 architecture is the communication fabric linking applications, OS
kernel and hardware, that extends from library interfaces in userspace down
to peripheral devices. It crosscuts the classical OS layering. The present
I/O architecture not only impedes performance on conventional hardware,
it also obstructs the use of heterogeneous hardware. For high-speed network
processing, i-Code proposes an I/O architecture for commodity operating
systems that avoids common I/O bottlenecks and enables clean integration
of arbitrary hardware.

On monolithic operating systems such as Linux, streaming I/O appli-
cations encounter one or more of the common bottlenecks presented in
Figure 6.1. Transport overhead accrues where data is forwarded, at the
crossings between hard- and software compartments. Computation issues
can occur anywhere; these are the result of a poor match of application to
available hardware. We now discuss the six bottlenecks.

1. System Calls Commonly, processes communicate with the kernel through
system calls that require a mode-transition and copy operation for each
block.

2. IPC System call overhead affects inter process communication (IPC)
most. Traffic between applications is copied twice and per-call block
size is constrained (often to 4 KB), causing frequent task-switching.

3. Group Communication Multiprocess access to the same data is seen
in group communication (which subsumes 2-party IPC) and when aux-
iliary tasks such as traffic monitors are enabled. As in the IPC case,
access to shared data requires a copy for each process and frequent
task-switching.

4. Kernel Subsystems Between kernel subsystems copying is required
when interfaces are incompatible. A classic example is having to copy
between the disk cache and network queues while pinning of memory
pages suffices in principle.

www.icode-project.eu 46 July 11, 2011

6.2. I-CODE ARCHITECTURE

Figure 6.1: I/O Bottlenecks in a monolithic OS—the numbers are explained
in the text.

5. Direct I/O Data traverses the kernel even when it performs no op-
eration. High-speed devices (e.g., DAG cards [10]) present libraries
that bypass this bottleneck, but these require superuser privileges and
exclusive device access and they replace generic I/O primitives with
vendor-specific APIs. An OS approach combines standard kernel con-
trol for resource multiplexing and device configuration with generic
kernel bypass interfaces on the datapath.

6. Fixed Logic Applications sometimes encounter the above bottlenecks
unnecessarily, because OSes force all to structure I/O logic the same
way. A fileserver can save two copies by moving fast-path logic to
the kernel; a DNS daemon can reduce latency by bypassing the kernel
completely.

6.2 1i-Code architecture

The i-Code I/O architecture avoids common bottlenecks by reconfigur-
ing datapath logic at application load time to match workload and exploit
special-purpose hardware. In general, the two extremes in coping with het-
erogeneous hardware and software configurations are (a) not to deal with it
at all (static code), and (b) fully recompile all the code with specific opti-
mizations for each specific configuration. We propose a mid-way point be-
tween static code and full recompilation, because both are impractical. The
first cannot anticipate all computer architectures and applications. The sec-
ond requires a single tool-chain capable of programming all available devices
on each end host.

Instead, we construct application-tailored I/0 paths at runtime from sets
of precompiled processing and buffering elements. It avoids bottlenecks by

www.icode-project.eu 47 July 11, 2011

CHAPTER 6. A SCALEABLE I/O ARCHITECTURE

optimizing the mapping of applications onto the physical computer architec-
ture: a tailoring algorithm selects the set of elements that (1) satisfies the
application, (2) maximizes the use of specialized hardware and (3) minimizes
data movement, in that order.

The two components of the I/O architecture that are crucial for perfor-
mance are processing and buffering.

For processing, we reuse the well-known streams and filters model [26].
Streams and filters are the concepts behind the well-liked UNIX pipes. Un-
fortunately, the architecture behind pipes has so much overhead that pipes,
for all their elegance, are not used in practice for high-speed applications.
We refine them to avoid unnecessary cost from context switching, copying
and cache misses. Specifically, it moves processing close to the data and
minimizes data copying and task switching between stages.

Besides processing, efficient buffering management is crucial for I/O per-
formance and will only grown in importance as long as memory latency
keeps falling behind CPU speed increases. We propose a buffer manage-
ment system where all live data is kept in coarse-grain ring buffers, and
buffers are shared long-term between protection domains. Moreover, ac-
tual data transformation is replaced with updates to metadata structures,
whereever possible.

In our design, we reuse proven interfaces where possible and base our
system on Unix I/O [26]. We only deviate when functional or performance
constraints demand it (for instance, we will see that we add a zero-copy
peek () call to the POSIX file API to avoid unnecessary copying). Crucially,
we follow the design principles of Unix: in particular, that “everything is a
file,” i.e., that all resources live in the same filepath namespace and expose
the same file interface.

6.3 Buffering

A buffer management system controls the movement of data through a
computer system. Its design determines the number of copies, data-cache
misses and task switches per block. To maximize end-to-end throughput,
these technical buffering details must be managed centrally, concealed from
individual data clients, such as applications and filters.

6.3.1 POSIX File I/O

We explain the buffer management system design with a focus on copy -,
context switch -, and cache miss avoidance. Crucially, we base our design
on ring buffers.

As mentioned earlier, we choose the classic Unix file API for the I/O
streams (open(), read(), etc.). The reason is that the file API is appro-

www.icode-project.eu 48 July 11, 2011

6.3. BUFFERING

priate for sequential access typical for network intrusion systems and well
known.

Traditionally, this interface is implemented as part of the ABI, but we
will make it available in all address spaces and without a mode transition: all
calls are local function calls that operate on locally accessible memory buffers
(unless dictated otherwise by data access policy). Since POSIX read() has
expensive copy semantics, we extend the interface with a peek(int, char
*x, int) call, a read-like function that does not copy. Specifically, with
peek (), a client receives a direct pointer into the data stream.

Buffers are large contiguous memory regions capable of holding many
blocks of data. To transport data across memory protection domains with
minimal overhead, we share these regions among domains. Previous work
has shown that modifying virtual memory mapping is cheaper than copying.
We will increase these savings by reusing the same mappings for the duration
of an I/O path.

6.3.2 Ring buffers

Traditionally, operating systems allocate blocks on-demand and use pointer
queues to group blocks into streams. In contrast, we build static data rings,
or DBufs from large memory regions. A shared ring has previously been
shown to reduce copying cost between the kernel and userspace processes [8].

Static, shared rings hold a number of advantages over I/O based on
dynamically allocated blocks: they amortize allocation and virtual memory
management operations over the lifetime of streams and render sequential
access cheap within streams because blocks are ordered in memory.

Data and index buffers The I/O architecture receives network packets
in the circular DBufs. In addition, it places a pointer to this packet in a
second circular buffer, known as the index buffer, or IBuf. Applications use
the pointers in IBuf to find packets in DBuf.

The reason for using two buffers is that while an IBuf is specific to a
flow, the DBuf is shared. If the application opens two streams, there will
be just one DBuf and two IBufs. If the streams are “overlapping” (i.e.,
some packets in flow, are also in flowy), only one copy of each packet will
be in DBuf. However, if a packet is in both flows, a pointer to it is placed
in both IBufs. In other words, we do not copy packets to individual flows.
Moreover, the buffers are memory mapped, so we do not copy between kernel
and userspace either.

In addition, the indices in IBufs are small and easily fit in the cache.
Pushing data from one filter to another is as simple as moving the Ibuf
entry. There is no need to touch the data at all. This is good for cache
behaviour.

www.icode-project.eu 49 July 11, 2011

CHAPTER 6. A SCALEABLE I/O ARCHITECTURE

6.3.3 Signal batching

Copying and cache usage are not the only factors with a large impact on
performance. Signalling is another one. Our design specifically aims to
reduce overhead due to context switching and signalling.

Signalling occurs when one filter in the architecture goes and tells an-
other filter that there is new data available. For instance, when a component
X has data for component Y, it places the data in a buffer that can be ac-
cessed by Y (in our case in a shared data buffer) and then signals the other
party.

In traditional operating systems, this notification (or signalling) occurs
for every data block that one filter sends to another filter. Doing so incurs
a lot of overhead, due to context switches, TLB and cache pollution, etc.

In our design, we deliberately refrain from sending signals for every data
block. Instead, signals are batched. The batching is flexible. One possibility
is to use a procedure similar to the Linux NAPI patch for interaction with
a network card, which transitions from signalling to polling as the load goes
up. The difference in our architecture is that the signal batching permeates
the entire architecture.

6.4 TCP/IP on top of shared rings

The processing and buffer management abstraction sketched above are ideal
for fast I/O. Copying, context switching and signalling are avoided to boost
performance. The file API provides convenient access to data buffers, and
streams and filters allow one to build application conveniently. Unfortu-
nately, it is not very suitable for legacy applications that build on sockets.

One of our goals is to support both novel and legacy network applica-
tions. To do so, our I/O architecture needs a full-fledged TCP/IP stack.
TCP/IP stacks are hugely complicated. They deal with fragmentation,
checksumming error control, and the whole set of complicated procedures to
do with TCP’s time-outs, retransmissions, window management, reassem-
bly, slowstart, fast recovery, etc.

Mapping this complicated stack on a system of streams and filters on
a shared ring buffer management system is no trivial task. The way to
approach this is by building on the similarities between the file APIs and
sockets, and using a well-tested, reliable network stack, rather than writing
one from scratch. In our case, we plan to opt for a compact stack, such as
that of LWIP.

www.icode-project.eu 50 July 11, 2011

CHAPTER [

Console

The i-Code console will allow to see events generated by external sensors and
collected within a centralized database. The i-Code console will provide the
user with an easy and convenient way to browse, find, and analyze events;
therefore the design of this console will be purposely simple and plain. The
main screen will be composed by four parts: the header, the dashboard, the
list of collected events and the footer. Figure 7.1 shows the main screen as
it will appear after startup.

Header The header will allow to set and manage filters. Filters will be
created by typing filter tags, that are key-value pairs (e.g., dst-ip = ...)
into the text field—which will support autocompletion—placed at the upper
right corner. Complex filters will be created by arranging the filter tags in
rows and columns in the upper-left portion of the header. Filter tags in
rows will be conjuncted while filter tags in columns will be disjuncted. This
filtering approach will allow a good degree of flexibility: the user will be able
to create, omit or move filter tags to compose the desired filter. Figure 7.2
shows an example of a filter, which can be read as “show all the events
having destination IP equal to 123.056.123.042 and destination port equal
to 80 or 443.”

As described in Section 2.3, the console will have to satisfy some impor-
tant requirements in order to make it a powerful tool to analyze security
notifications and reports. First of all, the information provided by the sys-
tem will be presented both in text (Event List) and graphical (Dashboard)
forms; this will allow the user to both visually assess the overall situation
and, if needed, go deeper using the details shown by the table. Moreover, the

51

CHAPTER 7. CONSOLE

qQ

< S &

Q

£ onst events per source type top destination IPs-ports top source IPs g

Q

‘ <

8

X

2

(=]

Timestamp Name Risk Source IP Source Port Dest IP Dest Port Location Source Type Anubis Rpt 1

06/17/2011 15:00:00 Narme 1 High 123.123.123.123. 64521 123.056.123.042 80 Italy NEMU O
08/17/2011 15:00:00 Name 2 Low 123.123123.123 84521 123.056.123.042 443 Italy - 0
06/17/2011 156:00:00 Name 3 High 123.123.123.128 84521 123.066.123.042 80 Italy Correlated (%]
06/17/2011 15:00:00 Name 4 Medium | 123.128.123.123 64521 | 123.056123.042 | 443 Italy NEMU o
0647/2011 15:00:00 Name 1 High 123.123.123.123 64521 123.056,123.042 80 Italy NEMU)
06/17/2011 15:00:00 Name 2 | Low | 123123123123 64521 | 123.056.123.042 443 | Italy | = | (%]
06/17/2011 15:00:00 Name 3 High 123.123.123.128 64521 123.056.123.042 80 Italy Gorrelated Q

06/17/2011 15:00:00 Name4 Medium | 128420123428 64521 | 120056120082 443 | ltaly . NEwU | &) ~

06/17/2011 15:00:00 Narme | High 123123123123 64521 123.056.123.042 80 Italy NEMU) @«

06/17/2011 15:00:00 Name2z Low 12312012328 64521 | 123056120082 a3 | Italy | = | %) ~

06/17/2011 15:00:00 Name 3 High 123.123123.123 84521 123.056.123.042 80 Italy Correlated 0 E

06/17/2011 15:00:00 Name4 Medium | 123123123123 64521 | 123.056123.042 3 | taly C NEMU |) G

06/17/2011 15:00:00 Narme 1 High 123.123.123.123 64521 123.056.123.042 80 Italy NEMU) E
06/17/201115:00:00 Name2 Low | 123120128128 | 64521 123.066.123.042 443 | Italy | = | Q
06417/2011 15:00:00 Name 3 High 123.123.123.123 64521 123.066.123.042 80 Italy Corrolated %]
06/17/2011 15:00:00 Named Medium | 128.128.123.128 64521 | 123056120082 443 | Italy NEMU | o
06/17/2011 15:00:00 Name 1 High 123.123.123.128 64521 123.056.123.042 80 Italy NEMU ©
06/17/2011 15:00:00 Name2 Low | 123423423423 64521 | 123056120082 443 | ltaly | = | %)

06/17/2011 15:00:00 Name 3 High 123.123.123.123 64521 123.056.123.042 80 Italy Correlated (%] ﬁ

06/17/2011 15:00:00 Named Medium | 128123123128 64521 | 123066120082 443 | Italy O NEmU | @ -

S

w

Risk: 10H - 5M - 5L Sources: 1/P- 1 Port Destinations: 7 IP - 2 Ports

Figure 7.1: Mockup of the i-Code console’s main screen, composed by four
parts: header, dashboard, event list and footer.

Footer section can help by summarizing in a comprehensible and readable
way what the user is being shown by the other sections.

Extendibility is another issue addressed by the presented mockup: the
console will make use of a centralized database containing all the events
gathered from the external sensors and it will be possible at any time to
add new sensors and have their events shown in the Fvent List section.
This addition will be completely transparent to the administrator, after
configuring the newly added sensor. The user will also be able to discern
what (type of) sensor sent the event by just looking at the Source Type
column and, if needed, filtering by such property using the described filtering
System.

Note that the above column will report events also from a particular
kind of source, which will be a correlation engine. Correlated events will
appear in the Fvent List just as any other events and will have the same
properties of the events that triggered them. They will however be generated
by customizable rules triggered by incoming events and dispatched to the
main database by the correlation engine.

The i-Code will be built with all these guidelines in mind and will therefore
be an invaluable aid for the administrators in locating and analyzing the
security events that occurred within the network boundaries. It will in fact

www.icode-project.eu 52 July 11, 2011

"’ft, 205304 DsT PORT
e AND g filter
de ™ verme—)

T

BLOBAE events per source type top destination IPs-ports top source IPs

_40 9

FIL TERED

i

events per source type top destination IPs-ports top source IPs

Time: «amr. Name urce. Dest Port

T P ST T R R e T

Risk: 6H - 3M - 3L Sources: 1P - 1 Port Destinations: 7 /P - 2 Ports

Figure 7.2: Mockup of the i-Code console showing the events matching a
custom filter (in this dummy example, all the events having destination IP
equal to 123.056.123.042 and destination port equal to 80 or 443). Note that
a filter is created by arranging filter tags in the header section and, once set,
the dashboard shows three additional graphs reflecting this smaller portion
of data.

handle all the data management and visualization issues to provide the user
a comfortable way to watch the events flow or filter them in any useful way,
using simple tags and logical operators. It will also be developed using web
based technologies that are compatible with most of the browsers commonly
used (e.g., JavaScript, plain HTML) so that compatibility and dependency
issues will not arise during later phases of the project.

www.icode-project.eu 53 July 11, 2011

CHAPTER 7. CONSOLE

www.icode-project.eu 54 July 11, 2011

CHAPTER 8

Conclusions

In this deliverable, we described the design for the i-Code console. By com-
bining a variety of advanced detection and analysis techniques, the console
will enable administrators to correlate events. Moreover, the design is de-
liberately kept extensible, so that new modules can be added in the future.

The design is based on integration and innovation. Each of the con-
stituent components requires innovation: ambitious research in order to
realise the design. Examples include a radical re-orientation of analysis
techniques (from malware to shellcode), or an order-of-magnitude speedup
for payload execution (for Nemu). The i-Code consortium is quite confident
that these research goals will be achieved.

In addition, all these separate components will be explicitly integrated in
a unifying console. Only the unification of the different techniques will help
administrators to dig deeper into security incidents and respond to them in
a timely fashion.

In the remainder of the iCode we will work towards realising the design
described in this document.

55

CHAPTER 8. CONCLUSIONS

www.icode-project.eu 56 July 11, 2011

Bibliography

1]
2]
3]

Anubis. 2007. http://anubis.seclab.tuwien.ac.at.
Sans: Top cyber security risks, 2009.

P. Akritidis, E. P. Markatos, M. Polychronakis, and K. Anagnos-
takis. STRIDE: Polymorphic sled detection through instruction se-
quence analysis. In Proceedings of the 20th IFIP International Infor-
mation Security Conference (IFIP/SEC), June 2005.

P. Bania. Evading network-level emulation, 2009. http://piotrbania.
com/all/articles/pbania-evading- nemu2009.pdf.

U. Bayer, P. Comparetti, C. Hlauschek, C. Kruegel, and E. Kirda. Scal-
able, Behavior-Based Malware Clustering. In Proceedings of the 16th
Annual Network and Distributed System Security Symposium (NDSS),
20009.

U. Bayer, C. Kruegel, and E. Kirda. TTAnalyze: A Tool for Analyzing
Malware. In Proceedings of the 15th European Institute for Computer
Antivirus Research (EICAR) Annual Conference, 2006.

F. Bellard. QEMU, a Fast and Portable Dynamic Translator. In
USENIX Annual Technical Conference, 2005.

H. Bos, W. de Bruijn, M. Cristea, T. Nguyen, and G. Portokalidis.
FFPF: Fairly Fast Packet Filters. In Proceedings of OSDI’04, pages
347-363, San Francisco, CA, December 2004.

M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E. Bryant.
Semantics-aware malware detection. In Proceedings of the 2005 IEEFE
Symposium on Security and Privacy (SE&P’05), pages 3246, Oakland,
CA, USA, May 8-11, 2005. IEEE Computer Society.

o7

http://anubis.seclab.tuwien.ac.at
http://piotrbania.com/all/articles/pbania-evading-
http://piotrbania.com/all/articles/pbania-evading-
nemu2009.pdf

BIBLIOGRAPHY

[10]

[11]

[12]

[20]

J. Cleary, S. Donnelly, I. Graham, A. McGregor, and M. Pearson. De-
sign principles for accurate passive measurement. In Proceedings of
PAM, Hamilton, New Zealand, Apr. 2000.

M. Cova, C. Kruegel, and G. Vigna. Detection and Analysis of Drive-
by-Download Attacks and Malicious JavaScript Code. 2010.

W. de Bruijn, H. Bos, and H. Bal. Application-tailored i/o with stream-
line. ACM Transacations on Computer Systems (TOCS))., 29:6:1-6:33,
May 2011.

G. Hoglund and J. Butler. Rootkits: Subverting the Windows kernel.
Addison-Wesley Professional, 2005.

D. Kang, D. Fuller, and V. Honavar. Learning classifiers for misuse and
anomaly detection using a bag of system calls representation. In 6th
IEEFE Systems Man and Cybernetics Information Assurance Workshop
(IAW), 2005.

E. Kirda, C. Kruegel, G. Banks, G. Vigna, and R. Kemmerer. Behavior-
based spyware detection. In Proceedings of the 15th USENIX Security
Symposium (Security’06), Vancouver, BC, Canada, August 2006.

C. Kolbitsch, P. Milani, C. Kruegel, E. Kirda, X. Zhou, and X. Wang.
Effective and efficient malware detection at the end host. In Proceedings
of the 18th USENIX Security Symposium (Security’09), pages 351-366,
Montréal, Canada, Aug. 2009. USENIX Association.

C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna. Poly-
morphic worm detection using structural information of executables. In
Symp. on Recent Advances in Intrusion Detection (RAID), 2005.

J. Ma, J. Dunagan, H. J. Wang, S. Savage, and G. M. Voelker. Finding
diversity in remote code injection exploits. In Proceedings of the 6th
ACM SIGCOMM conference on Internet measurement, IMC 06, pages
53-64, 2006.

L. Martignoni, E. Stinson, M. Fredrikson, S. Jha, and J. C. Mitchell. A
layered architecture for detecting malicious behaviors. In Proceedings
of the 11th international symposium on Recent Advances in Intrusion
Detection (RAID’08), pages 78-97, Berlin, Heidelberg, 2008. Springer-
Verlag.

J. Mason, S. Small, F. Monrose, and G. MacManus. English shellcode.
In Proceedings of the 16th ACM conference on Computer and commu-
nications security (CCS), 2009.

www.icode-project.eu 58 July 11, 2011

BIBLIOGRAPHY

[21]

33]

S. Mukkamala, A. Sung, D. Xu, and P. Chavez. Static analyzer for vi-
cious executables (SAVE). In Proceedings of the 20th Annual Computer
Security Applications Conference (ACSAC’04), pages 326-334, Tucson,
AZ, USA, Dec. 2004.

J. Nazario. PhoneyC: A Virtual Client Honeypot. 2009.

M. Polychronakis, K. G. Anagnostakis, and E. P. Markatos. Compre-
hensive shellcode detection using runtime heuristics. In Proceedings of
the 26th Annual Computer Security Applications Conference (ACSAC),
December 2010.

M. Polychronakis, E. P. Markatos, and K. G. Anagnostakis. Network-
level polymorphic shellcode detection using emulation. In Proceedings

of the Third Conference on Detection of Intrusions and Malware &
Vulnerability Assessment (DIMVA), July 2006.

G. Portokalidis, A. Slowinska, and H. Bos. Argos: an emulator for fin-
gerprinting zero-day attacks. In Proc. ACM SIGOPS EUROSYS’2006,
Leuven, Belgium, April 2006.

D. M. Ritchie. A stream input-output system. ATéT Bell Laboratories
Technical Journal, 63(8):1897-1910, 1984.

C. Seifert and R. Steenson. Capture-HPC. https://projects.honeynet.
org/capture-hpc, 2008.

Skape. Understanding windows shellcode, 2003. http://www.hick.org/
code/skape/papers/win32-shellcode.pdf.

Skape. Safely searching process virtual address space, 2004. http:
//www.hick.org/code/skape/papers/egghunt-shellcode.pdf.

P. Szor. The Art of Computer Virus Research and Defense. Addison-
Wesley, 2005.

T. Toth and C. Kruegel. Accurate buffer overflow detection via abstract
payload execution. In Proceedings of the 5th Symposium on Recent
Advances in Intrusion Detection (RAID), Oct. 2002.

Z. Tzermias, G. Sykiotakis, M. Polychronakis, and E. P. Markatos.
Combining static and dynamic analysis for the detection of malicious

documents. In In Proceedings of the European Workshop on System
Security (EuroSec), 2011.

H. J. Wang, H. J. Wang, C. Guo, C. Guo, D. R. Simon, D. R. Simon,
A. Zugenmaier, and A. Zugenmaier. Shield: Vulnerability-driven net-
work filters for preventing known vulnerability exploits. In In ACM
SIGCOMM, pages 193—-204, 2004.

www.icode-project.eu 59 July 11, 2011

https://projects.honeynet.org/capture-hpc
https://projects.honeynet.org/capture-hpc
http://www.hick.org/code/skape/papers/win32-shellcode.pdf
http://www.hick.org/code/skape/papers/win32-shellcode.pdf
http://www.hick.org/code/skape/papers/egghunt-shellcode.pdf
http://www.hick.org/code/skape/papers/egghunt-shellcode.pdf

BIBLIOGRAPHY

[34] X. Wang, Y.-C. Jhi, S. Zhu, and P. Liu. Still: Exploit code detection
via static taint and initialization analyses. In Proceedings of the Annual
Computer Security Applications Conference (ACSAC), 2008.

[35] X. Wang, C.-C. Pan, P. Liu, and S. Zhu. Sigfree: A signature-free
buffer overflow attack blocker. In Proceedings of the USENIX Security
Symposium, Aug. 2006.

www.icode-project.eu 60 July 11, 2011

	Introduction
	System Design: The Big Picture
	The need for an integrated security console
	i-Code System Design
	Requirements
	Meeting the requirements

	Network-level Emulation
	Architecture
	Runtime Heuristics
	Resolving kernel32.dll
	Process Memory Scanning
	SEH-based GetPC Code

	Shellcode Analysis and Classification
	Shellcode Analysis and Collection Architecture
	Behavioral Analysis and Unpacking
	Shellcode Classification

	Behaviour-based Detection of Malcode
	Motivation
	Data Collection
	Raw Data Collection
	Data Normalization
	Experimental Data Set

	System Design
	System-Centric Approach to Detect Malicious Behavior
	Creating Access Activity Models

	A Scaleable I/O Architecture
	Bottlenecks in network processing
	i-Code architecture
	Buffering
	POSIX File I/O
	Ring buffers
	Signal batching

	TCP/IP on top of shared rings

	Console
	Conclusions

