
European Commission

Directorate-General Home Affairs

Prevention, Preparedness and Consequence Management of Terrorism
and other Security-related Risks Programme

HOME/2009/CIPS/AG/C2-050
i-Code: Real-time Malicious Code Identification

Deliverable D2: System Implementation

Workpackage: WP2: System Implementation
Contractual delivery date: December 2011
Actual delivery date: December 2011
Deliverable Dissemination Level: Public
Editor Paolo Milani (TUV), Martina Lindorfer

(TUV)
Contributors FORTH, POLIMI, EURECOM, VU
Internal Reviewers: VU, POLIMI

Executive Summary: In this deliverable, we describe the implementation of

the i-Code real-time malicious code detection system, focusing on its subsystems

and their integration. The system brings together the components of network-level

attack vector detection forensics tools, techniques for the classification and clus-

tering of shellcode based on the control flow graph, and behavioral-based malware

detection by benign-malicious action comparisons. It also incorporates techniques

for malcode detection in high-speed networks.

With the support of the Prevention, Preparedness and Consequence Management of
Terrorism and other Security-related Risks Programme. European Commission -

Directorate-General Home Affairs†.

†
This project has been funded with the support of the Prevention, Preparedness and Consequence Manage-

ment of Terrorism and other Security-related Risks Programme of European Commission - Directorate-General
Home Affairs. This publication reflects the views only of the author, and the Commission cannot be held re-
sponsible for any use which may be made of the information contained therein.

www.icode-project.eu 2 December 30, 2011

Contents

1 Introduction 7

2 Network-level Emulation 9

2.1 Scanning Network Traffic . 9

2.2 Shellcode Execution . 10

2.3 Detection Heuristics . 11

3 Shellcode Analysis and Classification 15

3.1 Shellcode Collection . 15

3.2 Shellcode Analysis . 16

3.3 Shellcode Classification . 20

4 Behavior-based Detection of Malcode 23

4.1 Detection Results . 23

4.2 Discussion . 27

5 A Scaleable I/O Architecture 29

5.1 Buffering . 30

5.1.1 Peek . 31

5.1.2 Ring buffers . 31

5.1.3 Indirection . 32

5.1.4 Size . 34

5.2 Processing and signaling . 35

5.3 Evaluation . 36

5.3.1 Unix primitives . 36

5.3.2 Tcpdump and nemulator 38

5.4 Summary . 39

3

CONTENTS

6 Console 41
6.1 The Big Picture . 41
6.2 Front-End . 42

6.2.1 Components . 42
6.2.2 Filtering system . 44

6.3 Back-End . 45
6.3.1 Web Server and Database 45
6.3.2 Prelude . 46

7 Testing Phase 51
7.1 First testbed . 52
7.2 Second testbed . 53

8 Conclusions 55

www.icode-project.eu 4 December 30, 2011

List of Figures

2.1 Overview of network-level emulation. 10

2.2 A typical execution of a polymorphic shellcode using network-
level emulation . 12

3.1 Interface for submitting shellcode samples to dynamic analysis. 16

3.2 Interface for accessing the report of the dynamic analysis re-
sult for a shellcode sample. 17

3.3 Sample node of the control flow graph calling an API function. 18

3.4 Sample control flow graph produced during dynamic analysis. 19

5.1 Copy avoidance with peek. For clarity, peek (’P’) results are
collapsed, because they all overlap. 31

5.2 Throughput with splicing (“fast”) 31

5.3 Chain of data rings holding data and index buffers holding
pointers to data . 32

5.4 Effects of scaling at runtime, when each round cuts the buffer
size in half . 35

5.5 Interrupt moderation . 36

5.6 Unix pipe throughput: rate of several of our I/O architecture
configurations compared to threads (best case) and processes
(worst case). 37

5.7 Pipe cost factors: number of task switches and cache misses
observed at various buffer sizes. 37

5.8 Tcpdump: CPU load for 200Mbps flow 38

5.9 Nemu: multiple cores . 39

5.10 Nemu: multiple machines . 39

6.1 Overall architecture of i-Code console 42

6.2 Mockup of the i-Code console’s main screen 43

5

LIST OF FIGURES

6.3 Mockup of the i-Code console with filter 44
6.4 Close-up of the filtering system 45
6.5 Sequence diagram of the filter update 46

7.1 Interactions among components 52
7.2 Architecture of first testing environment 53

www.icode-project.eu 6 December 30, 2011

CHAPTER 1

Introduction

The i-Code project aims to detect and analyze malicious code and Internet
attacks in real time. Its scope includes the detection of attacks in the net-
work and on the host, the analysis of the malicious code, and post-attack
forensics. Thus, the project takes on challenges from different aspects of
operational security and proposes to address them with a number of novel
detection and analysis tools. Due to the variety of the tasks they face, these
tools are very diverse, but they can be interconnected to provide an enriched
understanding of security incidents, by means of the i-Code console.

In the previous deliverable D1: System Design, we discussed the design of
each i-Code detection and analysis component. Furthermore, we explored
the potential synergies between these components and provided an early
blueprint for the i-Code console. In this document, we continue from there,
and report on the implementation of the i-Code components that has been
carried out by the project partners.

Outline In this document, we describe the implementation of the i-Code
tools, highlighting all the individual components, as well as the way in which
they will be integrated. In Chapter 2, we discuss our techniques for shellcode
detection based on network level emulation. In Chapter 3, we present our
system for performing behavioral analysis of the collected shellcodes, and to
classify them based on the structure of their (unpacked) code. Chapter 4
describes our techniques for detecting malware on the end host by con-
trasting its behavior against normal behavior patterns obtained from real,
uncompromised machines. Chapter 5 describes the scalable, high/perfor-
mance I/O architecture that we developed to speed up payload execution.
Chapter 6 provides more detail on the i-Code console, including not just

7

CHAPTER 1. INTRODUCTION

the web-based frontend, but also the backend architecture and data model.
Finally, in Chapter 7 we lay out our plans for deploying the i-Code tools to
a testbed to verify their functionality and effectiveness.

www.icode-project.eu 8 December 30, 2011

CHAPTER 2

Network-level Emulation

Network-level emulation is an effective approach for the detection of code
injection attacks, based on the identification of the shellcode that is part
of the attack vector. In this chapter we describe the implementation of
Nemu, our research prototype network-level attack detector used in i-Code.
Although Nemu aims to detect server and client side attacks at the network
level, its core detection engine is generic and can identify the presence of
shellcode in arbitrary inputs.

2.1 Scanning Network Traffic

Emulation-based detection aims to identify the mere presence of shellcode in
arbitrary data streams. The principle behind this approach is that, due to
the high density of the IA-32 instruction set in terms of available opcodes,
any piece of data can be interpreted as valid machine code and can be treated
as such. For example, in the same way an input that is treated as a series of
bytes can be inspected using string signatures or regular expressions, when
the same input is interpreted as a series of machine instructions, it can then
be examined using code analysis techniques like static code analysis or code
emulation.

The machine code interpretation of arbitrary data results to random
code which, when it is attempted to run on an actual CPU, usually crashes
soon, e.g., due to the execution of an illegal instruction. In contrast, if some
input contains actual shellcode, then this code will run normally, exhibit-
ing a potentially detectable behavior, as illustrated in Figure 2.1. Shellcode
is nothing more than a series of assembly instructions, usually crafted as
position-independent code that can be injected and run from an arbitrary

9

CHAPTER 2. NETWORK-LEVEL EMULATION

GET /indGET /ind ex.php HTex.php HT TP/1.1 HosTP/1.1 Hos …

GET /index.php HTTP/1.1 Host: www.foo.com

benign request

…

inc edi
inc ebp
push esp
and [edi],ch
imul ebp,[esi+0x64],dword 0x702e7865
push dword 0x54482070
push esp
push eax
das
xor [esi],ebp
xor [eax],esp
...

G
E
T
/

index.p
hp HT
T
P

1.
1
...

\x6A\x0F\x59\x6A\x0F\x59 \xE8\xFF\xFF\xE8\xFF\xFF \xFF\xFF\xC1\xFF\xFF\xC1 …

\x6A\x0F\x59\xE8\xFF\xFF\xFF\xFF\xC1\x5E\x80…

malicious request

…

push byte +0x7f
pop ecx
call 0x7
inc ecx
pop esi
add [esi+0xa],0xe0
xor [esi+ecx+0xb],cl
loop 0xe
xor [esi+ecx+0xb],cl
loop 0xe
xor [esi+ecx+0xb],cl
...

6A07
59
E8FFFFFFFF
FFC1
5E
80460AE0
304C0E0B
E2FA
...

Figure 2.1: Overview of network-level emulation. After TCP stream re-
assembly, each network request is interpreted as machine code and is loaded
on a CPU emulator. The execution of the random code corresponding to
a benign request usually ends abruptly after a few instructions, while the
execution of an actual shellcode exhibits certain detectable behaviors.

location in a vulnerable process, and thus its execution can be easily simu-
lated using merely a CPU emulator.

Nemu passively captures network packets using libpcap [13], reassem-
bles TCP/IP streams using libnids [19], and then scans the client-initiated
part of each TCP connection using the runtime heuristics presented in the
previous deliverable D1: System Design. The default input buffer size is set
to 128KB, which is large enough for typical service requests. Especially for
web traffic, pipelined HTTP/1.1 requests through persistent connections are
split into separate streams. Otherwise, an attacker could evade detection by
filling the stream with benign requests until exceeding the buffer size.

2.2 Shellcode Execution

Our goal is to detect network streams that belong to code injection attacks
by passively monitoring the incoming network traffic and identifying the
presence of shellcode. Each request to some network service hosted in the
protected network is treated as a potential attack vector. The detector
attempts to execute each incoming request on a CPU emulator as if it were
executable code.

Instruction set emulation has been implemented interpretively, with a
typical fetch, decode, and execute cycle. Accurate instruction decoding,
which is crucial for the identification of invalid instructions, is performed
using libdasm [9]. For our prototype, we have implemented a subset of the
IA-32 instruction set, including most of the general-purpose instructions,
but no FPU, MMX, SSE, or SSE2 instructions, except fstenv/fnstenv,
fsave/fnsave, and rdtsc. However, all instructions are fully decoded,

www.icode-project.eu 10 December 30, 2011

2.3. DETECTION HEURISTICS

and if during execution an unimplemented instruction is encountered, the
emulator proceeds normally to the next instruction.

The implemented subset suffices for the complete and correct execu-
tion of the decryption part of all the shellcode implementations that we
used during our testing. Even highly obfuscated shellcode generated by the
TAPiON polymorphic shellcode engine [5], which intersperses FPU instruc-
tions among the decoder code, is executed correctly, since FPU instructions
are used only as NOPs and do not take part in the useful computations of
the decoder.

Since the exact location of the shellcode in the input data is not known
in advance, the emulator repeats the execution multiple times, starting from
each and every position of the stream. In certain cases, however, the execu-
tion of some code paths can be skipped to optimize runtime performance [17].

2.3 Detection Heuristics

Our approach for the generic detection of previously unknown shellcode is
based on runtime detection heuristics that match inherent execution pat-
terns found in different shellcode types. All heuristics are evaluated in par-
allel and are orthogonal to each other, which means that more than one
heuristic can match during the execution of some shellcode, giving increased
detection confidence. For example, some heuristics match the decryption
process of polymorphic shellcodes, while others match operations found in
plain shellcode. Since any polymorphic shellcode carries an encrypted ver-
sion of a plain shellcode, the execution of a polymorphic shellcode usually
triggers both self-decrypting and plain shellcode heuristics.

The overall concept can be thought as analogous to the operation of
a typical signature-based intrusion detection system, with some key differ-
ences: each input is treated as code instead of a series of bytes, the detection
engine uses code emulation instead of string or regular expression match-
ing, and each “signature” describes a generic, inherent behavior found in
all instances of a particular type of malicious code, instead of an exploit or
vulnerability-specific attack vector.

The execution of self-decrypting shellcode is identified by two key run-
time behavioral characteristics: the execution of some form of GetPC code,
and the occurrence of several self references, i.e., read operations from the
memory addresses of the input stream itself, as illustrated in Fig 2.2. The
GetPC code is used by the shellcode for finding the absolute address of
the injected code, which is mandatory for subsequently decrypting the en-
crypted payload, and involves the execution of an instruction from the call

or fstenv instruction groups [16].

Besides the GetPC self-decrypting shellcode detection heuristic [16], the
rest of the heuristics used in Nemu are mostly based on memory accesses

www.icode-project.eu 11 December 30, 2011

CHAPTER 2. NETWORK-LEVEL EMULATION

Self-modifications

Decryptor Encrypted Payload

Shellcode

Virtual Address Space

GetPC Code

Figure 2.2: A typical execution of a polymorphic shellcode using network-
level emulation. Its self-decrypting behavior is identified by two key runtime
characteristics: the execution of some form of GetPC code, and the occur-
rence of several self references.

to certain locations in the address space of a vulnerable Windows process.
To emulate the execution of these accesses correctly, the virtual memory of
the emulator is initialized with an image of the complete address space of a
typical Windows XP process taken from a real system. The image consists
of 971 pages (4KB each), including the stack, heap, PEB/TIB, and loaded
modules. All four heuristics use the same memory image and thus can be
evaluated in parallel during execution (the same holds for the fifth GetPC
heuristic, which does not rely on the memory image at all).

Among other initializations before the beginning of a new execution [16],
the segment register FS is set to the segment selector corresponding to the
base address of the Thread Information Block, the stack pointer is set ac-
cordingly, while any changes to the original process image from the previous
execution are reverted.

The runtime evaluation of the heuristics requires keeping some state
about the occurrence of instructions with an operand that involved the FS

register, as well as about read and write accesses to the memory locations
specified in the heuristics. Note that for conditions that specify a pointer ac-
cess, as for example the reading of the PEB.LoaderData pointer in condition
P2, all four bytes of the pointer should be accessed. If during some execution
the address of PEB.LoaderData is read by an instruction with a byte mem-
ory operand, condition P2 will hold only when all three remaining bytes of
the pointer are also read by subsequent instructions. This kind of pedantic
checks enhance the robustness of the heuristics by ruling out random code
that would otherwise accidentally match some of the conditions.

Regarding the SEH-based memory scanning heuristic (described in D1:
System Design), although SEH chain validation is more complex compared
to other instrumentation operations, it is triggered only if conditions S1 and
S2 are true, which in practice happens very rarely. If upon the execution
of some instruction S1 and S2 are satisfied but S3 is not, then SEH chain
validation is performed after every subsequent instruction that performs a
memory write.

www.icode-project.eu 12 December 30, 2011

2.3. DETECTION HEURISTICS

When an int 0x2e instruction is executed, the eax register is checked
for a value corresponding to one of the system calls that can be used for
memory scanning. Although the actual functionality of the system call is
not emulated, the proper return value is stored in the eax register depending
on the validity of the supplied memory address. In case of an egg-hunt shell-
code, this behavior allows the scanning loop to continue normally, resulting
to several system call invocations.

www.icode-project.eu 13 December 30, 2011

CHAPTER 2. NETWORK-LEVEL EMULATION

www.icode-project.eu 14 December 30, 2011

CHAPTER 3

Shellcode Analysis and Classification

Our aim is to analyze shellcodes that are being used by attackers in the wild
in order to study their variety and phylogeny. In this chapter we describe
our infrastructure for collection shellcode samples as well as our dynamic
analysis tool for analyzing a shellcode behavior and obtaining unpacked
code. Based on the unpacked version of a shellcode’s code we then use static
analysis techniques and perform unsupervised clustering of the collected
shellcodes.

We based the implementation of the dynamic shellcode analysis on the
Anubis malware analysis tool [7, 4, 6], a dynamic malware analysis system
based on an instrumented Qemu [8] emulator. It is offered as an open service
through a public website, where users can submit binaries for analysis, and
receive a report that describes the behavior of the sample in a human-
readable way.

3.1 Shellcode Collection

In order to integrate the submission of shellcodes from various sources we
extended the web interface of Anubis (illustrated in Figure 3.1). This in-
terface is publicly available at http://shellcode.iseclab.org/ and can be
used by anybody anonymously to submit samples. Registered users can
use this interface to submit shellcodes analyzed with a higher priority than
anonymous submissions.

Apart from manual submissions to the web interface we also offer Python
scripts for the automated submission of shellcodes. We use these scripts
for the submission of shellcodes detected by Nemu [17] as well as batch
submissions from external partners.

15

http://shellcode.iseclab.org/

CHAPTER 3. SHELLCODE ANALYSIS AND CLASSIFICATION

Figure 3.1: Interface for submitting shellcode samples to dynamic analysis.

3.2 Shellcode Analysis

Shellcode samples are submitted as binary blobs. Thus, as a first step we
need to transform the shellcode in an executable format analyzable by Anu-
bis. This enables us to perform a high-level analysis of the submitted shell-
codes and to monitor behavior such as downloading files, or opening ports
on the victims computer. To this end we wrap the shellcode into a Win-
dows PE executable template that consists of the header of a PE executable
with its entry point set to the end of the file, so that when we append the
shellcode to the end of this template it gets executed when the executable
is run. Optionally we can also set the entry point to some other location
inside the shellcode.

Anubis analyzes the Windows PE executable template containing a shell-
code sample in an emulated environment and logs its Windows API and
Windows Native API calls. After the shellcode terminates or a timeout has
been reached, Anubis provides a detailed report of the shellcode’s high-level
behavior in various formats (HTML, XML, PDF and text), as well as a
dump of its network activity (traffic.pcap) produced with libpcap [13]. We
extended this existing reporting functionality (see Figure 3.2) to provide two
additional analysis artifacts: A control flow graph (flowgraph.eps) and the
unpacked and decrypted version of the shellcode (decryptedShellcode.bin).

www.icode-project.eu 16 December 30, 2011

3.2. SHELLCODE ANALYSIS

Figure 3.2: Interface for accessing the report of the dynamic analysis result
for a shellcode sample.

In order to generate these more low-level analysis artifacts we extended
Anubis to allow for a more fine-grained analysis of the shellcode itself. To
this end, we adapted and integrated the generation of the following log files
from previous work [10]:

FlowLog:
Contains the address and size of each executed translated basic block.

SliceLog:
Contains the identification information and contents of each translated
basic block.

MemLog:
Stores current instruction pointer and target address of each memory
access.

MemDump:
Holds the values that are read or written in the corresponding MemLog
entry. If read, this log file has to be iterated parallel to the MemLog
file.

For the logging of the FlowLog and the SliceLog we extended Anubis
in the following way: Every translated basic block is handed to a callback
function in Anubis before it is going to be executed. Therefore by an ex-
tension of this function, we log every executed basic block in the FlowLog
and its corresponding data, namely the executed code itself, in the SliceLog.
We also apply filtering of the executed basic blocks so that we only log the

www.icode-project.eu 17 December 30, 2011

CHAPTER 3. SHELLCODE ANALYSIS AND CLASSIFICATION

user-specific portion of the shellcode and not the execution of system level
API calls. In order to generate memory dumps we implemented a new func-
tion in Qemu’s code translator, which is responsible for translating the code
of the guest operating system into executable code on the host operating
system. Every time the code translator handles an operation that reads or
writes memory we log this operation in the MemLog and MemDump.

We process the obtained information from these log files to generate the
CFG, which represents disassembled translated basic blocks as nodes and
transfers in control flow as edges between these nodes. For our implemen-
tation we use Graphviz and the DOT language to represent our flow graph,
but an extension to different output formats is possible.

For our purposes we adjusted the representation of data in the CFG
with three heuristics: First, we simplified the CFG by collapsing nodes
that are only connected together by one execution path. Second, we added
information about the execution order of API function calls to the nodes
in the CFG. Third, we extended the CFG to include information about the
existence of decryption layers. We do this by checking if an executed region
of code has been written before by another operation in the code (write then
execute heuristic). Whenever we detect a new layer of decryption during
graph generation, we can also dump the current memory of the code. Since
during analysis not every execution path will be taken, this allows for a later
analysis of the code to check, if there is some interesting information inside
the decrypted section.

Figure 3.4 shows a sample CFG generated during the analysis phase.
Everything inside the red box corresponds to one decryption layer. That
means, this code was decrypted by an operation in the layer above. The
number in the curly braces corresponds to the hexadecimal address of the
code that actually wrote this layer. Grey nodes represent nodes that include
calls to an API function. Figure 3.3 shows one of these nodes, which in
that case calls the API function WinExec. The label 2 of the API function
means that this function was the third API function to be executed during
execution.

Figure 3.3: Sample node of the control flow graph calling an API function.

www.icode-project.eu 18 December 30, 2011

3.2. SHELLCODE ANALYSIS

layer_{ 40021c }

400210[0]:
jmp .+0x13
400223[1]:
call .+0xffffffef
400212[1]:
pop esi
xor ecx, ecx
mov cl, 0xe7
xor byte ptr ds:[esi+ecx+0xffffffff], 0xa
sub cl, 0x1
jnz .+0xfffffff8

400217[0]:
xor byte ptr ds:[esi+ecx+0xffffffff], 0xa
sub cl, 0x1
jnz .+0xfffffff8

1

230

400221[0]:
jmp .+0x7

1

400228[1]:
jmp .+0x56
40027e[1]:
xor eax, eax
add eax, dword ptr fs:[eax+0x30]
js .+0xe
400286[1]:
mov eax, dword ptr ds:[eax+0xc]
mov esi, dword ptr ds:[eax+0x1c]
lodsd eax, dword ptr ds:[esi]
mov eax, dword ptr ds:[eax+0x8]
jmp .+0xb
40029b[1]:
xchg ebp, eax
mov edi, 0xec0e4e8e
call .+0xffffff89

1

40022a[1]:
mov esi, dword ptr ss:[ebp+0x3c]
mov esi, dword ptr ss:[ebp+esi+0x78]
add esi, ebp
push esi
mov esi, dword ptr ds:[esi+0x20]
add esi, ebp
xor ecx, ecx
dec ecx
inc ecx
lodsd eax, dword ptr ds:[esi]
xor ebx, ebx
movsx edx, byte ptr ss:[eax+ebp]
cmp dl, dh
jz .+0xa

1

400249[1]:
ror ebx, 0xd
add ebx, edx
inc eax
jmp .+0xfffffff1

4

400240[1]:
movsx edx, byte ptr ss:[eax+ebp]
cmp dl, dh
jz .+0xa

30867 29130

400251[1]:
cmp ebx, edi
jnz .+0xffffffe9

1737

40023c[1]:
inc ecx
lodsd eax, dword ptr ds:[esi]
xor ebx, ebx
movsx edx, byte ptr ss:[eax+ebp]
cmp dl, dh
jz .+0xa

1733

400255[1]:
pop esi
mov ebx, dword ptr ds:[esi+0x24]
add ebx, ebp
mov cx, word ptr ds:[ebx+ecx*2]
mov ebx, dword ptr ds:[esi+0x1c]
add ebx, ebp
mov eax, dword ptr ds:[ebx+ecx*4]
add eax, ebp
retn

4

1733

4002a6[1]:
sub esp, 0x4
sub dword ptr ss:[esp], 0x3c
call eax
7c801d7b[1]:
{0} LoadLibraryA
4002af[1]:
xchg ebp, eax
push eax
mov edi, 0x702f1a36
call .+0xffffff74

1

4002bb[1]:
mov edx, dword ptr ss:[esp+0xfffffffc]
lea edx, dword ptr ds:[edx+0xffffffba]
xor ebx, ebx
push ebx
push ebx
push edx
jmp .+0x26
4002ed[1]:
call .+0xffffffdc
4002c9[1]:
push ebx
call eax
7e23bc8b[1]:
{1} URLDownloadToFileA
4002cc[1]:
pop ebp
mov edi, 0xe8afe98
call .+0xffffff58

1

4002d7[1]:
sub esp, 0x4
sub dword ptr ss:[esp], 0x62
call eax
7c8623ad[1]:
{2} WinExec
4002e0[1]:
mov edi, 0x73e2d87e
call .+0xffffff45

1

4002ea[1]:
push edx
call eax
7c81cafa[1]:
{3} ExitProcess
0[1]:
{3}

1

1 11

Figure 3.4: Sample control flow graph produced during dynamic analysis.

www.icode-project.eu 19 December 30, 2011

CHAPTER 3. SHELLCODE ANALYSIS AND CLASSIFICATION

3.3 Shellcode Classification

By clustering the collected shellcodes we can determine how similar they
are and whether attackers make large use of exploitation tools (e.g., metas-
ploit) or they write their own custom shellcodes. Based on these clusters
we can also classify newly detected shellcodes as either belonging to an ex-
isting cluster, i.e. resembling code that we have seen before, or being new
code. Therefore, we perform single-linkage agglomerative hierarchical clus-
tering on all of our collected shellcode samples. Single-linkage means that we
compute the distance between two clusters as the distance between the two
closest elements in the two clusters. Agglomerative means that we merge
the clusters iteratively so that our algorithm performs the following steps:

1. Assign each shellcode to a separate cluster so that for N shellcodes
we have N clusters each containing only one shellcode. The distances
between clusters are the same as the distances between the shellcodes
they contain.

2. Find and merge the closest pair of clusters and merge them into a
single cluster.

3. Compute the distance between the new cluster and each of the existing
clusters.

4. Repeat steps 2 and 3 until all shellcodes are clustered into a single
cluster of size N (or until we have reached the desired degree of well-
separateness between the clusters).

Instead of implementing this clustering algorithm from scratch we take
advantage of existing implementations in the R programming language [3].
Primary candidates for hierarchical clustering in R are the standard R func-
tion hclust or agnes from the cluster package [1]. Another variant of hier-
archical clustering is implemented by fastcluster [2]. The main benefit of
fastcluster is its faster and memory-saving implementation which leads to
a worst-case time complexity of O(N2) instead of O(N3) as for hclust and
agnes [15].

The input for the clustering algorithm is a distance (or ”dissimilarity”)
matrix that contains distances between all pairs of shellcodes we collected.
For the distance calculation we use the following functions, that operate on
the unpacked version of a shellcode’s code:

Exedit Distance: The exedit distance was defined by Ma et al. [12] as
the relative edit distance over the executed bytes of the shellcode. The
executed bytes of the shellcode are concatenated in the order they
appear in the payload in order to construct a string representation of
the shellcode. The distance between two such strings is calculated as

www.icode-project.eu 20 December 30, 2011

3.3. SHELLCODE CLASSIFICATION

the number of edit operations (insertion, deletion and substitution)
that are needed to transform one string into another and normalized
over the length of the longer string.

Ma et al. concluded that this distance metric is better than the relative
edit distance over the entire shellcode because changes in embedded
string constants may greatly influence th metric, if data is not distin-
guished from code.

CFG Fingerprint Distance: We refined the techniques of Kruegel et
al. [11] to calculate the structural distance between two shellcodes.
For this we first disassemble the unpacked shellcode and build its CFG
from which we then derive fingerprints for k-subgraphs of basic blocks.
We represent a shellcode as a set of fingerprints and set the distance
between two shellcodes to zero if there is one or more elements in the
set intersection of fingerprints. Conversely, we set the distance to one
if two shellcodes have no common fingerprints.

CFG Basic Block Distance: Based on the CFG of the unpacked shell-
code we calculate another structural distance from the basic blocks
of two shellcodes. For this we calculate the ratio of the number of
mismatched basic blocks to the number of common basic blocks (the
Jaccard distance).

www.icode-project.eu 21 December 30, 2011

CHAPTER 3. SHELLCODE ANALYSIS AND CLASSIFICATION

www.icode-project.eu 22 December 30, 2011

CHAPTER 4

Behavior-based Detection of Malcode

In the previous deliverable D1: System Design we described the data set of
system call traces that we collected in the wild from ten real-world users. In
the rest of this chapter we focus instead on the presentation of the experi-
ments results.

4.1 Detection Results

In this section, we evaluate the effectiveness of a detector based on access
activity models. Similar to the analysis for the n-gram model, we ran ten
experiments. More precisely, for each experiment, we picked one of the
machines. We then used the system call data recorded on the other nine
hosts to generate the access activity model, as described in the previous
section. Finally, we used this model for detection. For this, we first checked
the resource accesses performed by all processes on the machine that was
not used for model generation. Then, we examined the accesses performed
by the malware samples. For each experiment, we evaluated the detection
capabilities and false positives of the file system model alone, the registry
model alone, and both models combined.

File system access activity model. On average, the file system ac-
cess activity model contains about 100 labels. These labels contain tokens
that restrict read access to about 70 directories, write access to about 80
directories, and execute access to about 30 directories. The results for the
file system model are shown in Table 4.1 and Table 4.2. In these tables,
we see a number of different columns for the detection rates and the false
positive rates. These are discussed in the following paragraphs.

23

CHAPTER 4. BEHAVIOR-BASED DETECTION OF MALCODE

Machine Detection rate False positive rate

1 0.656 0.225
2 0.657 0.173
3 0.657 0.154
4 0.657 0.156
5 0.657 0.143
6 0.635 0.242
7 0.657 0.267
8 0.657 0.045
9 0.657 0.025
10 0.657 0.050

Average 0.655 0.148

Table 4.1: Summary of the detection based on our file-system access activity
model.

When using the original model to check all read, write, and execute
accesses, we see an average detection rate of almost 66% for the malware
samples (column Detection rate) and a false positive rate of roughly 15%
(column False positive rate). Note that, similar to the experiments with
the n-gram models, the false positive rates are computed on the basis of
applications and not processes.

At first glance, the results appear sobering. However, a closer examina-
tion of the result reveals interesting insights. First, we decided to investigate
the false negative rate in more detail. When looking at the execution traces
of the malware programs, we observed that many samples did not get far
in their execution but quickly exited or crashed. Interestingly, a substantial
fraction of malicious samples never wrote to the file system or the registry,
and they did not open any network connections. It is difficult to confirm
that these samples exhibit any malicious activity at all. In fact, this calls
into question the occasionally very high detection rates of the n-gram-based
model, and it further confirms our previous insight that system call se-
quences are not closely related to actual malicious behavior. As a result, we
decided to remove all samples that never perform a write operation or open
a network connection (or socket) from our malware data sets. This decreases
our malware data set to 7,847 samples that exhibit at least some kind of
activity. It also improves our detection rate to more than 90%, as can be
seen in column Adjusted detection rate of Table 4.2. For the remainder of
this paper, all reported detection rates are computed based on the adjusted
malware data set.

In the next step, we investigated the false positives in more detail. Ta-
ble 4.2 shows the access violations for each machine, divided into violations
due to read (column Read), write (column Write), and execute (column Ex-
ecute) access attempts. It can be seen that execute violations account for

www.icode-project.eu 24 December 30, 2011

4.1. DETECTION RESULTS

Machine
Adjusted
detection

rate

Access violations rate Detection
rate (only

writes)

Final detection

Read Write Execute
FP
rate

Det. rate

1 0.906 0.000 0.022 0.222 0.864 0.0 0.864
2 0.907 0.000 0.011 0.172 0.902 0.0 0.902
3 0.907 0.000 0.130 0.043 0.902 0.0 0.902
4 0.907 0.024 0.049 0.122 0.902 0.0 0.902
5 0.907 0.024 0.024 0.095 0.902 0.0 0.902
6 0.877 0.014 0.055 0.242 0.868 0.0 0.868
7 0.907 0.020 0.041 0.265 0.901 0.0 0.901
8 0.907 0.000 0.045 0.000 0.902 0.0 0.902
9 0.907 0.000 0.025 0.000 0.902 0.0 0.902
10 0.907 0.000 0.038 0.038 0.902 0.0 0.902

Average 0.904 0.008 0.044 0.137 0.895 0.0 0.895

Table 4.2: Detection based on our file-system access activity model (details).

a significant majority of false positives. However, we also found that they
are only marginally important for detection. Thus, for the next experiment,
we decided to use only the access tokens that refer to write operations.
This is justified by the fact that we are most interested in preserving the
integrity of the operating system resources. The detection results for the
new write-only detection approach are presented in column Detection rate
(only writes) of Table 4.2. As can be seen, the numbers remain high with
89.5%. This confirms that write access violations are a good indicator for
malicious activity. With this approach, the false positives are identical to
the write violations, which are shown in column Write.

We further examined the reasons for the remaining write violations. It
turned out that these violations were due to two root causes. One set of
false positives was caused by our own system-call logging component that
wrote temporary files directly into the C:\ directory before sending the
data over the network. The second reason was due to software updates.
More precisely, we detected a number of cases in which an application was
writing to its folder in C:\Program Files. Of course, only this program
had read/execute access to that directory. However, we never saw a write
access during training, and as a result, the directory was considered read-
only. To accommodate for updates, we manually added a rule to the model
that would grant write permission to applications that “own” directories in
C:\Program Files. Moreover, we granted our component write access to
C:. With more extensive training, both access activities would have very
likely been added automatically. The model that incorporated our minor
adjustments generated no more false positives, as shown in column Final
detection/FP rate. However, the detection capabilities of the model remain

www.icode-project.eu 25 December 30, 2011

CHAPTER 4. BEHAVIOR-BASED DETECTION OF MALCODE

Machine
Detection

rate

False
positive

rate

Det.
rate

(only
writes)

FP rate
(only

writes)

Final
det.
rate

1 0.567 0.063 0.530 0.063 0.521
2 0.557 0.107 0.540 0.053 0.521
3 0.566 0.179 0.530 0.128 0.062
4 0.557 0.000 0.530 0.000 0.540
5 0.557 0.000 0.530 0.000 0.540
6 0.557 0.015 0.530 0.000 0.540
7 0.597 0.133 0.530 0.000 0.540
8 0.557 0.067 0.530 0.067 0.537
9 0.561 0.100 0.530 0.025 0.521
10 0.557 0.000 0.530 0.000 0.540

Average 0.563 0.066 0.530 0.034 0.486

Table 4.3: Detection based on our registry access activity model.

basically unchanged, as shown in column Final detection/det. rate.

Registry access activity model. On average, the registry access
activity model contains about 3,000 labels, significantly more than the file-
system model. The labels contain tokens that restrict read access to about
1,600 keys and write access to about 2,800 keys (execute is not defined for
registry keys).

The results for the registry model are shown in Table 4.3. The columns
Detection rate and False positive rate show the detection rates and the false
positive rate, respectively, for the original model. It can been seen that
both the detection rate and the false positive rates are lower than for the
file system model. We also examined the detection rate and the false positive
rate when considering only write operations (columns Det. rate (only writes)
and FP rate (only writes)). Similar to the file system case, the false positive
rate drops significantly; there are five runs in which no false positives were
reported at all. However, the detection rate remains (relatively) high.

We also examined the cases for which the registry access model raises
false positives. We found that all registry write access violations can be
attributed to the sub-tree HKEY_USERS\Software\Microsoft. While this is
an important part of the registry that contains a number of security settings,
we wanted to understand the detection capabilities of a model that permits
write access to these keys. To this end, we added a manual rule to allow
writes to this sub-tree and re-run the experiments on the malware data set.
We see that the model is still effective and achieves a detection rate of over
48% (shown in column Final det. rate of 4.3) with no false positives. Consid-
ering the significantly larger size of the registry models compared to the ones

www.icode-project.eu 26 December 30, 2011

4.2. DISCUSSION

for the file system, we expect that a larger training set would be required
to effectively capture legitimate writes to the Software\Microsoft sub-tree.

Full access activity model. For the final experiment, we combined
those improved file system and registry models that yielded zero false pos-
itives. The combined detection rate improves compared to the file system
model alone, but only slightly (between 1% and 2% for all of the ten runs).
The average detection improved from 89.5% to 91% (of course, with no false
positives).

4.2 Discussion

When focusing on write operations only, our access activity model achieves
a good detection rate (more than 90%) with a very low false positive rate.
The false positive rate even drops to zero with minor manual adjustments
that compensate for deficiencies in the training data, while still retaining
its detection capabilities. This suggests that a system-centric approach is
suitable for distinguishing between benign and malicious activities, and it
handles applications not previously seen well. This happens because most
benign applications are written to be good operating system “citizens” that
access and manage resources (files and registry entries) in the way that
they are supposed to. In fact, as we can observe from our results, out of
242 distinct applications seen in our experiments, policy violations occurred
only for few, specific classes of programs (system utilities, AV software). On
the other hand, violations of n-gram models, occurred across the board.

Malicious programs frequently violate good behavior, often because their
goals inevitably necessitate tampering with system binaries, application pro-
grams, and registry settings. Of course, we cannot expect to detect all
possible types of malicious activity. In particular, our detection approach
will fail to identify malware programs that ignore other applications and
the OS (e.g., the malware does not attempt to hide its presence or to gain
control of the OS) and that carry out malicious operations only over the
network. For these types of malicious code, it will be necessary to include
also network-related policies. Finally, the data collection overhead is very
low and enforcing the generated models is even faster, since no writes (for
logging) occur.

www.icode-project.eu 27 December 30, 2011

CHAPTER 4. BEHAVIOR-BASED DETECTION OF MALCODE

www.icode-project.eu 28 December 30, 2011

CHAPTER 5

A Scaleable I/O Architecture

In deliverable D1: System Design, we discussed an architecture for high-
speed network processing. In this chapter, we will flesh out the architecture
and discuss the implementation.

An I/O architecture is the communication fabric linking applications, OS
kernel and hardware, that extends from library interfaces in userspace down
to peripheral devices. It crosscuts the classical OS layering. The present
I/O architecture not only impedes performance on conventional hardware,
it also obstructs the use of heterogeneous hardware. As the bottleneck in
system software has moved from the CPU to the memory system (especially
for I/O-intensive tasks such as networking), we need an I/O architecture
that alleviates pressure on the memory subsystem.

As mentioned in D1, the i-Code I/O architecture avoids common bot-
tlenecks by reconfiguring datapath logic at application load time to match
workload and exploit special-purpose hardware. In general, the two ex-
tremes in coping with heterogeneous hardware and software configurations
are (a) not to deal with it at all (static code), and (b) fully recompile all the
code with specific optimizations for each specific configuration. We find a
mid-way point between static code and full recompilation, because both are
impractical. The first cannot anticipate all computer architectures and ap-
plications. The second requires a single tool-chain capable of programming
all available devices on each end host.

Instead, we construct application-tailored I/O paths at runtime from
sets of precompiled processing and buffering elements. It avoids bottlenecks
by optimizing the mapping of applications onto the physical computer archi-
tecture: a tailoring algorithm selects the set of elements that (1) satisfies the

29

CHAPTER 5. A SCALEABLE I/O ARCHITECTURE

application, (2) maximizes the use of specialized hardware and (3) minimizes
data movement, in that order.

The two components of the I/O architecture that are crucial for perfor-
mance are processing and buffering. For processing, we reuse the well-known
streams and filters model and for buffering, we opt for a buffer management
system where all live data is kept in coarse-grain ring buffers, and buffers
are shared long-term between protection domains. Moreover, actual data
transformation is replaced with updates to metadata structures, wherever
possible.

In summary, we developed an I/O architecture with the following prop-
erties:

1. a buffer management system for I/O that avoids common copy, context
switch and cache miss overhead through shared memory transport and
indirection.

2. a dataplane that bypasses bottlenecks and integrates all hardware by
selecting suitable implementations of logic on-demand to form I/O
paths: graphs of processing and buffering elements.

3. a control system that automatically translates application requests ex-
pressed as abstract Unix-like pipelines into I/O path implementations
tailored to the application profile and local hardware characteristics.
On top of this we have engineered legacy I/O interfaces to allow direct
comparison with Linux.

When we evaluated the architecture we found that it:

I Increases Unix primitive throughput 2x to 30x over standard Linux.

II Increases legacy application throughput up to 4x.

III Increases throughput further when modified call semantics are allowed.

IV Enables intrinsically efficient and portable native applications.

5.1 Buffering

A buffer management system (BMS) controls the movement of data through
a computer system. Its design determines the number of copies, data-cache
misses and task switches per block. To maximize end-to-end throughput,
these technical buffering details must be managed centrally, concealed from
individual data clients, such as applications and filters.

www.icode-project.eu 30 December 30, 2011

5.1. BUFFERING

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 100 10000 1e+06

Th
ro

ug
hp

ut
 (M

B
ps

) (
lo

gs
ca

le
)

Bytes per call (logscale)

P All
R 4K

R 16K
R 64K

R 256K
R 1M
R 4M

Figure 5.1: Copy avoidance with peek.
For clarity, peek (’P’) results are col-
lapsed, because they all overlap.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 500 1000 1500 2000

M
B

ps

Bytes per call

peek only
fast p/w

read only
fast r/w

peek/write
read/write

Figure 5.2: Throughput with
splicing (“fast”)

5.1.1 Peek

One performance drawback of Unix I/O is that it implements expensive
copy semantics, that is, read and write create private copies of blocks for
the caller. To avoid this cost, we extend the API with peek(int, char

**, int), a read-like function that uses weak move semantics. With peek,
a client receives a direct pointer into the stream. The read call, then, is
nothing more than a wrapper around peek, memcpy and exception handling
logic. Figure 5.1 shows the gains obtained by switching from a copy-based
read (R) to an indirect peek (P) call. The figure plots throughput for various
DBuf sizes at increasing call sizes (size of the application buffer passed in
read and write calls). As expected, peek throughput scales linearly for all
buffers, as it is purely computational. Read throughput, on the other hand,
experiences memcpy overhead. Even for the smallest packets, it is about one
third slower than peek.

5.1.2 Ring buffers

Static, shared rings hold a number of advantages over I/O based on dy-
namically allocated blocks: they amortize allocation and virtual memory
management operations over the lifetime of streams and render sequential
access cheap within streams because blocks are ordered in memory. As
mentioned in D1, we use shared ring buffers for data and indices.

The transport system that we use supports multiple buffers. Interest-
ingly, we can actually exploit this requirement by specializing buffer im-
plementations to fit the task profile or hardware at hand. For example,
packet reception rings allow overflow, while IPC rings implement blocking
semantics.

www.icode-project.eu 31 December 30, 2011

CHAPTER 5. A SCALEABLE I/O ARCHITECTURE

Ibuf

Ibuf

Dbuf

Ibuf

Dbuf

Figure 5.3: Chain of data rings holding data and index buffers holding
pointers to data

Device driver buffers match the hardware specification of their specific
device. In the end, we weave this array of buffers together into a coherent
transport system with indirect buffers, to which we now focus our attention.

5.1.3 Indirection

Presenting clients with an idealized view of private, sequential streams
conflicts with copy-avoidance through buffer sharing. A shared packet re-
ception ring holds multiple entangled application streams. When one client
needs write access to a shared resource it effectively asks for an independent
stream. We can disentangle streams through copying, but that is expensive.
The alternative is to use a type of indirection, such as hardware protected
virtual memory.

We replace pointers with indices and pointer queues with index buffers
or “IBufs”, that store the indices. Figure 5.3 shows the interoperation of
IBufs with DBufs. IBufs differ from pointers in two ways: they replace
direct addressing with globally valid lookup structures and add a small set
of metadata fields.

The main feature of indices is their lookup structure: a “rich” pointer.
Indices must be able to address buffer contents across virtual memory pro-
tection domains. Each index implements a three-level lookup structure con-
sisting of a systemwide unique identifier of a DBuf, a block index within this
buffer, and an optional offset plus length pair to select a region within the
block (e.g., a TCP segment within an Ethernet frame).

Indices from different IBufs may share access to the same DBuf and
indices within the same IBuf may point to blocks in multiple DBufs. Fig-
ure 5.3 shows both situations. The first situation is common when multiple
clients need a private view on data in a shared ring, which we discussed
before. The second situation occurs when a client needs to access multiple
rings, e.g., a server listening on two NICs.

Resolving rich pointers is more expensive than following regular pointers,
but this cost is amortized by caching a translation for subsequent accesses
within the same space. Handling “buffer-faults” is more costly. Such excep-

www.icode-project.eu 32 December 30, 2011

5.1. BUFFERING

tions occur when a referenced DBuf is not mapped into the current memory
protection domain. To maintain the illusion of globally shared memory,
buffer-faults are handled similar to demand paging: an index pointing to a
buffer that is not accessible causes the kernel to map the buffer in the task’s
virtual memory (after verifying access permission).

5.1.3.1 Transparent indirection

The BMS shields clients from indirection details: IBufs present the same file
interface as DBufs and perform read- and write-through to referenced DBufs
internally, so that clients can remain unaware of which they are accessing.
Reading from an IBuf entails resolving the rich pointer and then calling the
peek method of Section 5.1.1 of the mentioned DBuf. Writing to an IBuf also
involves selecting a DBuf as backing store; currently each space appoints one
default buffer. Such transparent indirection enables copy avoidance behind
the interface, known as splicing [14].

5.1.3.2 Splicing

When a write request to an IBuf involves data that already resides in a
DBuf, write-through can be avoided. This situation occurs often, not in the
least because we incorporate the disk cache as a DBuf. On top of IBufs we
have implemented splicing: generic, copy-free data transfer between streams.

Results We now quantify the effects of splicing on throughput for both
peek and read, whereby we do not optimize the read call through page
access revocation. Figure 5.2 shows the relative efficiency in transferring
data from a DBuf to IBuf, by plotting each method’s throughput against
call size. The test is indicative of file servers, for instance, where data is
read from the page cache and written to the network transmission buffer.
The fastest mechanism is peek only: the peek equivalent of read-only ac-
cess. This mechanism processes even faster than the physical bus permits,
because no data is touched. The method serves no purpose; we only show
it to set an upper bound on the performance. About half as fast is fast
peek/write, which combines peek with splicing. This, too, does not actually
touch any data, but writes out an IBuf element. Overhead caused by read

can be seen by comparing these two results with those of read only and
fast read/write. They are 3x slower still. Worst results are obtained when
we cannot use splicing, but instead must write out data: throughput drops
again, by another factor 2.5. This experiment clearly shows that combined
gains from copy avoidance are almost an order of magnitude (9x) when all
data is cached. Savings will be even higher for buffers that exceed L2, be-
cause then the large blocks will cause many more d-Cache and TLB misses
than the small IBuf elements.

www.icode-project.eu 33 December 30, 2011

CHAPTER 5. A SCALEABLE I/O ARCHITECTURE

5.1.4 Size

The size of a buffer influences its maximum throughput in two ways: larger
buffers reduce synchronization overhead (such as task-switching), but smaller
buffers experience fewer cache misses. We therefore make our buffers vari-
able size, where the size is adjusted at runtime. We call such buffers ’self-
scaling’. They adapt their size at runtime based on “buffer pressure”: the
distance between producer and consumer, normalized to buffer size. If pres-
sure goes above a high-water mark a ring grows; if it drops below the op-
posite, it shrinks. We have implemented two types of scaling: ‘reallocation’
and ‘deck-cut’. Both are handled behind the interface, i.e., transparent to
the user.

Reallocation replaces one memory region with another of a different size.
A reallocation operation can only be started without copying when the pro-
ducer reaches the end of the region (i.e., when it would otherwise wrap
around). As long as consumers are accessing the old region, both regions
must be kept in memory. The approach is similar to rehashing and has the
same drawback: during reallocation the buffer takes up more space than
before. Deck-cut avoids this problem. It allocates a maximum-sized buffer,
but can temporarily disable parts of it, in a manner similar to how a deck of
cards is cut: everything behind the cut is left unused. Deck-cut is compu-
tationally cheaper than reallocation, because the only required action is to
move the pointer indicating the start of the ring. As a result, it is well-suited
to highly variable conditions. We exploit this characteristic by moving the
watermarks closer together. A drawback is that it never returns memory to
the general allocator.

Scaling is restricted by a few technical considerations. In our I/O archi-
tecture, indices (including the read and write pointers) must be monoton-
ically increasing numbers (i.e., they are not reset during a wrap), because
those tell in which loop through the buffer – and in the case of reallocation
in which memory region – an index falls. To learn the offset of a block in a
memory region, one calculates the modulo of the number of slots in the ring
(S). When a buffer scales, S changes. To guarantee correct offset calcula-
tion for all sizes, modulo operations must always overlap. In other words,
all values of S must be natural multiples of the same base. The higher the
base, the faster the buffer expands and contracts (we only use base 2).

Results Figure 5.4 compares copy (i.e., write followed by read) through-
put for a static buffer of 16MB with that of rings that gradually self-scale
down from 16MB until they stabilize. A round denotes a decision moment
where the buffer can scale: a moment when the producer wraps around.
Figure (a) shows that both scaling buffers continue to decrease buffer size
at each opportunity. Figure (b) shows that, instead of scaling linearly with
buffer size, throughput sees three levels that correspond with access from

www.icode-project.eu 34 December 30, 2011

5.2. PROCESSING AND SIGNALING

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 2 4 6 8 10 12 14 16 18 20

B
uf

fe
rs

iz
e

(K
B

)

Round

static
realloc

deck-cut

(a) Buffer size

 0

 1000

 2000

 3000

 4000

 5000

 0 2 4 6 8 10 12 14 16 18 20

R
at

e
(M

B
ps

)

Round

static
realloc

deck-cut

(b) Throughput

Figure 5.4: Effects of scaling at runtime, when each round cuts the buffer
size in half

main memory, L2 and L1 caches, respectively. The increase in through-
put between main memory and L2 is significant: a three-fold improvement.
Deck-cut scales further down than reallocation as a result of the moved
watermarks.

5.2 Processing and signaling

The second main component concerns processing. We construct I/O appli-
cations on-demand from processing and buffering elements. Such application
tailored-I/O has the potential to maximize throughput, by moving logic close
to data and by exploiting unique hardware features.

Streams are point-to-point channels between filters. They map trivially
onto ring buffers, to form a store and forward network where each data block
is saved at each edge. But, the reading and writing of indices – let alone
data blocks – exceeds the operational cost of many I/O operations. We
avoid this unnecessary storage cost in the common case. If two connected
filters execute in the same memory protection domain and no external par-
ties (such as controlling application logic) require on-demand access to the
interconnecting stream, it schedules the second filter immediately after the
first and passes a pointer in-memory rather than saving an index (or the
original payload) to an intermediate buffer.

Merging filter execution at runtime in this manner increases data cache
hitrate and removes non-functional scheduling and memory access overhead.
The optimization can be applied recursively throughout a request graph. In
practice, we optimize away nearly all ring buffer accesses, because memory
protection crossings are few and application logic is commonly interested
only in a single stream of the I/O path: the end-result of all transformations.

Passing data blocks between execution spaces (e.g., from the kernel to
userspace) is expensive in traditional I/O architectures. Function calling is
not an option. Here we must resort to another, more expensive, method.

www.icode-project.eu 35 December 30, 2011

CHAPTER 5. A SCALEABLE I/O ARCHITECTURE

Polling and interrupt driven processing are standard approaches, but
both have drawbacks: polling wastes cycles at low rates and interferes with
scheduling; interrupts incur cost at high rates, exactly when the system is
already stressed. Hybrid systems, such as interrupt moderation, clocked
interrupts, or interrupt masking (as implemented in Linux NAPI), evade
both pathological cases. We combine interrupt moderation with timeouts
to amortize cost at high rates while bounding worst case delivery latency.
Its approach is unique in that both the interrupt moderation threshold and
timeout value can be set individually for each buffer. This way, the trade-off
between efficiency and latency can be tuned to application constraints.

 0

 200

 400

 600

 800

 1000

 1200

 0 500 1000 1500 2000

Th
ro

ug
hp

ut
 (M

B
ps

)

call size (B)

1
2
8

32
128

2048

Figure 5.5: Interrupt moderation

Results Figure 5.5 shows pipe
throughput offset against call size
at various levels of interrupt mod-
eration factor. All results are ob-
tained with a large DBuf of 16MB,
or 8000 slots, so that we have a wide
measurement range for signal mod-
eration. We send at least one sig-
nal per timeout epoch (in the ex-
periment set at 1000HZ) which lim-
its moderation benefit for very high
numbers. The figure shows that, indeed, throughput scales below linear.
When batching up to 32 signals we already achieve 92% of the maximally
obtainable gain (with factor 2048): 2.36x versus 2.56x. For this reason, 32
is the default moderation factor in our I/O architecture. For IBufs tuning is
more involved because we must also prevent overflow of referenced DBufs.
A simple and safe heuristic is to set the threshold to that of the smallest
referenced DBuf.

5.3 Evaluation

In the previous sections we supported our claims by micro-benchmarks
where applicable. We now compare our I/O architecture in a version of
Linux 2.6.24.2 head-to-head with a stock version in terms of application
throughput (or CPU utilization at steady rate). All tests were run on an
HP 6710b with Intel Core 2 Duo T7300 processor, 4MB L2 cache and 2 GB
RAM running in 32-bit mode. We ran the experiments on a single core to
minimize scheduler influence and show the full cost of task switching.

5.3.1 Unix primitives

Figure 5.6 shows throughput of straightforward copying (a write followed
by a read) through a Unix pipe at varying buffer size and for three IPC

www.icode-project.eu 36 December 30, 2011

5.3. EVALUATION

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 500 1000 1500 2000

Th
ro

ug
hp

ut
 (M

B
ps

)

call size (B)

64KB
1MB

16MB
Posix

Pthreads

Figure 5.6: Unix pipe throughput:
rate of several of our I/O archi-
tecture configurations compared to
threads (best case) and processes
(worst case).

Figure 5.7: Pipe cost factors: num-
ber of task switches and cache misses
observed at various buffer sizes.

implementations: a standard Linux pipe (with label ‘posix’), a producer/-
consumer pair of threads that directly access shared memory (‘Pthreads’)
and buffers of varying size. In this test, we do not use the peek optimization
and thus copy the same amount of data as the other applications. Any per-
formance improvement comes from a reduction in context switching. The
threaded application shows an upper bound on achievable performance, be-
cause it requires no kernel mode switches at all and it implements a multi-
packet ring. Similar to our rings, its throughput is dependent on buffer size,
but we only show the best case here for clarity (1MB). That configuration
outperforms Linux’s implementation of Unix pipes by a factor 5 for large
blocks and 12 for minimal blocks. In between are 4 differently sized tail-
drop DBufs. We see that the fastest implementation is neither the largest
(64MB), nor the smallest (64KB), but an intermediate one (1MB). This
outperforms Linux by a factor 4 for large and 9 for small packets and is
only between 20 and 33% slower than the optimal case. The precise factor
of throughput increase depends on physical cache size, producer-consumer
distance and whether the application buffer is cached, but the ratios are
static; we previously observed similar results on different hardware.

Figure 5.7 explains why the highest throughput is achieved with a medium-
sized buffer. Initially, performance grows with the buffer as the number of
necessary context switches drops when calls are less likely to block. Ulti-
mately, however, page-faults affect performance as the datacache or TLB
begins to witness capacity misses. These are more expensive than switches,
therefore maximum throughput is obtained when the working-set just fits
in the L2 cache.

www.icode-project.eu 37 December 30, 2011

CHAPTER 5. A SCALEABLE I/O ARCHITECTURE

Figure 5.8: Tcpdump: CPU load for 200Mbps flow

5.3.2 Tcpdump and nemulator

The micro-benchmarks demonstrate that significant savings in I/O over-
head can be achieved by optimizing buffer parameters and employing copy
avoidance. We now investigate to what extent these savings translate to
tcpdump and Nemu.

Figure 5.8 shows throughput of tcpdump 3.9.8, a popular traffic analyzer.
To investigate scalability with parallel data access, we capture a moderate
datastream: 200 Mbit of full-sized 1500B packets per second, generated with
iperf 2.0.2. The iperf server requires 50% CPU time. When capturing
with a single listener, (‘sl 96B’), we uses up hardly any extra resources, while
standard Linux (‘linux 96B’) requires 5% CPU time (10% of the application
cost). Savings decrease as we run applications in parallel. When captur-
ing full frames with 10 instances, we cause a 13% CPU overhead, slightly
above a single Linux instance, whereas Linux saturates the CPU and drops
packets. Running ten instances of tcpdump is not a common operation, but
the results are representative for any system configuration where multiple
applications access the same data, for instance network intrusion detection
and group communication using multiway pipes.

Nemulator is a sophisticated detector of code injection attacks in the
network based on Nemu. Rather than looking for specific patterns, Nemu
detects an attacker’s code (the shellcode) by treating every byte in the pay-
load as its potential entry point. Thus, it will execute these bytes as if
they were instructions. Typically, the execution hits an illegal instruction
fairly quickly and Nemu will try again, with the next byte and so on. It
raises an alert whenever the execution behaves in way that is indicative of
shellcode (such as running GetPC sequences and executing bytes that it
just wrote). Clearly, executing every byte in the payload is very expensive,
and performance has been limited to a few tens of Mbps when checking the

www.icode-project.eu 38 December 30, 2011

5.4. SUMMARY

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0 2 4 6 8 10 12

M
bp

s

#cores

nemu
linear speedup

Figure 5.9: Nemu: multiple cores

 0

 500

 1000

 1500

 2000

 2500

 0 2 4 6 8 10 12 14 16

M
bp

s

#nodes

nemu
linear speedup

Figure 5.10: Nemu: multiple ma-
chines

full stream in this way. We built a parallelized Nemu implementation for
multicore systems. A pipeline reassembles ingress TCP traffic and divides
the connections among a fixed set of streams. Each stream is communi-
cated by shared memory to a single core running a Nemu process. On a
single Xeon X5650, 2.67GHz, 6-core machine with two threads per core, this
configuration achieved 15-20 Mbps per thread and an overall throughput of
170Mbps with 11 processing threads. Figure 5.9 plots throughput with in-
creasing numbers of cores. When spreading the task over multiple machines
(replacing shared memory with UDP tunnels), the system scales to Gigabit
rates. Figure 5.10 shows that this slightly different configuration observes
linear scalability and reaches 2.5Gbps of aggregate throughput at 16 nodes.

5.4 Summary

By tailoring I/O paths automatically and on demand, we have taken an
extreme position in the OS design space. The architecture reduces overhead
from copying, context switching and caching, which improves throughput
of a representative set of applications between 30% and 10x over standard
Linux. Furthermore, it presents an OS-based solution to the problem of
integrating special-purpose hardware. The result is practical software that
can be, and has been, directly applied to networking tasks such as intrusion
prevention, application serving and media streaming.

www.icode-project.eu 39 December 30, 2011

CHAPTER 5. A SCALEABLE I/O ARCHITECTURE

www.icode-project.eu 40 December 30, 2011

CHAPTER 6

Console

6.1 The Big Picture

As described in Chapter 1, i-Code project aims at detecting and analyzing
malicious code and Internet attacks in real time. That’s not, however, the
only scope of this project: it also aims at creating an easy and centralized
way to show the results of those tasks.

Therefore, while the underlying tools (described in the previous chapters)
are the “core” of the system, great relevance must also be given to the only
part that the user will interface with: the console. This component has to
gather all the relevant events generated by the peripherical sensors and show
them to the user in an understandable and usable way; the main result is that
the tools become part of something bigger, that integrates and correlates
information from different sources to provide the user with a clearer view
of what’s going on in the system. Thus, the component described in this
chapter, though not being “active” within the system, has a fundamental
role in i-Code project.

The i-Code console is a web application whose back-end performs the
information retrieval from the database: this choice provides the user with
a multiplatform environment accessible via browser by any kind of operating
system or device. Thus, the front-end is very light and fast, while the whole
logic is handled by the back-end, as described in Sections 6.2 and 6.3.

Figure 6.1 shows the architecture of the i-Code console and all its com-
ponents.

41

CHAPTER 6. CONSOLE

Figure 6.1: Overall architecture of i-Code console

6.2 Front-End

The front-end is what the user is shown as soon as he accesses the applica-
tion; the initial view is simple, in order to provide an immediate feedback of
the ongoing situation of the system: it shows charts on the general events,
with no filtering, and lists them (see Figure 6.2).

The primary way the user can interact with the console is the filtering
system: he can easily create filtering elements, called filter tags, and arrange
them to compose complex queries, as described in Section 6.2.2.

6.2.1 Components

The front-end is composed of four components: header, dashboard, event
list and footer; they are described in this Section.

Header The header allows to set and manage filters. Filter creation is
described in Section 6.2.2 and modifies the main view as shown in Figure 6.3:
the header shows the currently active filter set, new charts represent the

www.icode-project.eu 42 December 30, 2011

6.2. FRONT-END

Figure 6.2: Mockup of the i-Code console’s main screen, composed of four
parts: header, dashboard, event list and footer.

situation of the system with respect to the only events the user is interested
in, and the event list is restricted to those events only.

Dashboard The dashboard shows a graphical overview of the alerts. In
particular, three charts are shown: daily number of events per source type,
top destination IPs and ports, and the top source IPs. The console displays
this information both for the entire dataset (upper section of the dashboard)
and for filtered events (lower section). If no filter is selected, only the upper
section will be visible, as shown in Figure 6.2.

Event list This part shows the events that match the desired filter, if any;
otherwise it reports all the events in the database. Every row shows date and
time of the event, its name (if known), risk (high, medium or low), source
IP and port, destination IP and port, and country of origin. The source
type is also reported, so that the user will know what tool (e.g., Nemu) sent
the event. In addition, the last column shows whether an Anubis report
is available for the event. If available, the report is shown whenever the
user clicks on the green icon. Otherwise the click triggers a request sent to
Anubis, which generates the report. This behavior provides the system with
the event forwarding capability that was part of the initial requirements
defined in deliverable D1: System Design.

www.icode-project.eu 43 December 30, 2011

CHAPTER 6. CONSOLE

Figure 6.3: Mockup of the i-Code console showing the events matching a
custom filter (in this dummy example, all the events having destination IP
equal to 123.056.123.042 and destination port equal to 80 or 443). Note that
a filter is created by arranging filter tags in the header section and, once set,
the dashboard shows three additional graphs reflecting this smaller portion
of data.

Footer The footer summarizes the events in the event list, providing the
user the total number of records matching the filter, their risk and the
number of distinct source and destination IPs and ports.

6.2.2 Filtering system

The main functionality implemented by the front-end is the filtering sys-
tem: it allows to define complex filters to narrow event searches down and
to display only events satisfying some criteria, thus greatly improving the
usability of the i-Code console.

Its design is quite simple: using the input field in the top right corner of
the console, the user creates the atomic units of the filters, called filter tags;
they are simple key-value pairs (e.g., src-ip = . . .) expressing a condition
and they can be created over any of the fields that describe an event. Also,
auto-completion is provided to help the user create filter tags with the least
effort.

www.icode-project.eu 44 December 30, 2011

6.3. BACK-END

Figure 6.4: Close-up of the filtering system

Once a user defines a filter tag, it is placed in the console header and
that’s where it gets effective in the system: every tag is evaluated based on
its position with respect to other tags. In this way complex filters can be
created by means of simply dragging tags in the correct place.

In particular, filter tags in rows will be conjuncted (i.e., condition set1
and condition set2) while those in columns will be disjuncted (i.e., con-
dition set1 or condition set2). Figure 6.4 shows an example of a filter,
which can be read as “show all the events having destination IP equal to
123.056.123.042 and destination port equal to 80 or 443.”

Technology As for the rest of the i-Code console, the filtering system has
to be usable on every devices that has web capabilities (i.e., that can run a
fully–functional web browser): that’s why, wherever possible, no proprietary
technologies or standards were used.

AJAX was therefore the main choice to build the filtering systems and, at
the same time, allowing a smooth user experience while using the console:
AJAX, in fact, allows to compose and update filters, retrieve data from
the back-end and show events in an asynchronous way, without having to
completely reload the page (a quite annoying drawback of standard HTML
environments).

6.3 Back-End

The i-Code console back-end is where all the data and logic reside, but not
only: it also includes the overall infrastructure built to gather, parse and
store new events.

The back-end is therefore made of two distinct parts: the web application
and the event collector.

6.3.1 Web Server and Database

The web application back-end implements all the methods tailored at pro-
viding the user with all the required data. In the case of the i-Code console
it is quite simple, since the only relevant task is performing the desired query
on the database and returning the results to the user.

The only bottleneck in this approach is the database itself (if it contains
many events) but there are plenty of ways to solve the issue, creating the
correct indexes being the simplest one.

www.icode-project.eu 45 December 30, 2011

CHAPTER 6. CONSOLE

Figure 6.5: Sequence diagram of the filter update

Figure 6.5 shows the sequence of actions required to update a view after
the user has updated a filter: note that the web server has also to create the
new graphs to be displayed on the main page of the GUI.

This part of the back-end is built using Django and MySQL. The first
is a framework tailored at creating web applications and therefore perfectly
suitable for our purpose; it is also highly customizable and lightweight. The
database, instead, is a standard MySQL server, compatible with both the
web application and the Prelude MySQL connector.

6.3.2 Prelude

The i-Code console includes a component that has the role of aggregat-
ing and storing all the events coming from the peripherical sources (see
Figure 6.1); instead of building it from scratch, we decided to rely on an
existing working application: Prelude1.

Prelude is built around a centralized manager which handles all the in-
coming events and sends them to the database and, possibly, to the correla-
tion engine(s). The manager, which can be made redundant for the sake of
availability, is the core of the whole system, since all the communications,
event handling, notifications and event storing are on it. It is, anyway, pos-
sible to deploy its components on different machines, to lower computational
load on a single machine.

1http://www.prelude-technologies.com/

www.icode-project.eu 46 December 30, 2011

http://www.prelude-technologies.com/

6.3. BACK-END

The external components are responsible for the generation and the dis-
patching of security events and, excluding particular cases (e.g. the correla-
tion engine), have to be deployed on the monitored machine. As mentioned,
there are “special” components that can be instead deployed anywhere, since
they only need access to the database and the manager; it’s the case of the
correlation engine, which does not generate events from a host machine but
rather analyzes all the events gathered by the system and creates new ones
based on custom rules.

Communication between the manager and all the components (both cen-
tral and peripheral) is secured via asymmetric cryptographic keys which are
automatically exchanged during the component registration phase.

Infrastructure

Prelude includes four main components:

Manager It’s the core of the system, as already described. It requires
libPrelude to work correctly, since it uses this library to handle secure
connections with the components.

Event storage connector The manager does not store the events on its
own: to make it fully customizable, it was built to use an external
connector component that manages the event storage. There is a dif-
ferent component for every type of storage, be it a simple file on the
hard drive or a database or even a SNMP notification; its task is to
reserve and maintain all the necessary resources to reliably store the
events and make them available when (and if) needed. In the case of
the i-Code console, a MySQL connector is used, in order to be able to
read and write on the database included in our architecture.

Correlator The correlator engine is a particular kind of sensor: it generates
events like all other sensors, but they do not originate from some
security alerts. They are rather the result of an internal rule matching:
this components gets the events from the manager and checks them
against some precompiled rules; if a rule triggers a new event is raised
and sent to the manager.

External sensors These are the components that are responsible of gener-
ating events based on internal mechanisms; sensors can be of any kind,
depending on the requirements of the system: they can be authentica-
tion sensors, intrusion detection systems, physical access sensors, . . . In
i-Code the only peripherical components that will be used are the ones
described in the previous Chapters.

www.icode-project.eu 47 December 30, 2011

CHAPTER 6. CONSOLE

Database Format

Prelude system exchanges events among the components in IDMEF (Intru-
sion Detection Message Exchange Format) format. IDMEF is based on XML
and can be completely customized to someone’s needs. In Prelude, there are
five types of events: Alert, CorrelationAlert, OverflowAlert, ToolAlert and
Heartbeat. All the events have the structure defined in Table 6.1 (names in
square brackets refer to nodes, not simple fields).

i-Code and Prelude

Prelude has some limitations due to the event format it uses by default and
the necessity to build compatible sensors in order to deploy them within the
system.

In the previous section we described the event format used by Prelude.
For i-Code, instead, the event format is designed to include the following
fields:

• Timestamp

• Name

• Risk

• Source IP

• Source Port

• Destination IP

• Destination Port

• Location

• Source Type

The two obviously slightly differ. In order to use the i-Code format, the
most correct way would be to learn how Prelude handles the event fields in
its source code and how they are then mapped onto the database; this would
require, though, a deep study of the source code of the manager component
and might lead to modifications that cannot be done in an easy and reliable
way. If modifications are applied on the source code without being well
planned, they might lead to bugs or break the compatibility with existent
component.

The adopted workaround is to use the Additional Data field in Prelude
format to add all the data that i-Code has that are not easily mappable
in the available IDMEF format. This field accepts data in the format <
label, value >, so multiple occurrences can exist within a single event. The

www.icode-project.eu 48 December 30, 2011

6.3. BACK-END

Node Fields

AdditionalData
type
meaning
data

Address

category
vlan name
vlan num
address
netmask

Analyzer

analyzerid
name
manufacturer
model
version
class
ostype
osversion

AnalyzerTime
time
usec
gmtoff

Assessment
[Confidence]
[Impact]

Checksum
algorithm
value
checksum key

Classification text

Confidence
confidence
rating

CreateTime
time
usec
gmtoff

DetectTime
time
usec
gmtoff

File

path
name
category
create time
create time gmtoff
modify time
modify time gmtoff
access time
access time gmtoff
data size
disk size
fstype
file type

FileAccess [File]

Node Fields

Impact

description
severity
completion
type

Node

[Address]
category
location
name

Process

[ProcessArg]
[ProcessEnv]
name
pid
path

ProcessArg arg
ProcessEnv env

Reference

origin
name
url
meaning

Service

ip version
name
port
iana protocol numer
iana protocol name
portlist
protocol

Source

[User]
[Service]
[Node]
[WebService]
spoofed
interface

Target

[User]
[Service]
[Node]
[WebService]
decoy
interface

User
[UserId]
category

UserId

type
name
tty
number

WebService

[WebServiceArg]
url
cgi
http method

WebServiceArg arg

Table 6.1: Prelude IDMEF format

www.icode-project.eu 49 December 30, 2011

CHAPTER 6. CONSOLE

correct mapping is the one proposed in Table 6.2. Note that this is the
minimum requirement in an event: other fields can be added when necessary.

i-Code field Prelude field

Timestamp alert.detect time.time

Name alert.classification.text

Risk alert.assessment.impact.severity

Source IP alert.source(0).node.address(0).address

Source Port alert.source(0).service.port

Destination IP alert.target(0).node.address(0).address

Destination Port alert.target(0).service.port

Location
alert.additional data(0).type = ’string’
alert.additional data(0).meaning = ’location’
alert.additional data(0).data = [value]

Source Type alert.analyzer.model

Table 6.2: Mapping from i-Code event fields to Prelude IDMEF format

www.icode-project.eu 50 December 30, 2011

CHAPTER 7

Testing Phase

After the development phase of the i-Code project, the single components
(both sensors and console) will be integrated and the overall system will
undergo a testing phase.

The aim of this phase is to verify if the single components work correctly
and, more important, if their integration is correct and flows as expected.
Figure 7.1 shows the basic integration of the i-Code components in a com-
plete system.

As depicted in Chapter 6, the console is the collector of all the events
generated by the sensor: in particular it receives the security events from
Argos [18], NEMU (described in Chapter 2) and Access Miner (described in
Chapter 4). These events are directly imported in the database and shown
to the user but they’re not the only data exchanged between the sensors
and the console; in the case of Argos and NEMU, in fact, the events are
coupled with the shellcode that originated the alert: this chunk of data is
then sent by the console to the Anubis remote system, where it is analyzed.
When done, Anubis sends a report id to the console, which is then saved
in the appropriate field of the security event and shown in the GUI. The
same interaction happens between Access Miner and Anubis; in this case,
though, the sensor itself sends the sample it collected to Anubis and waits
for a report id: when it possesses all these information, it sends the alert
and the report id directly to the console.

The console, however, is not a simple receptor of the event: during the
testing phase some basic correlation rules will be defined and implemented.
They will be the outcome of a manual analysis of the behavior of the system
in order to reduce the ”noise” of the events; one of these basic rules will be

51

CHAPTER 7. TESTING PHASE

Figure 7.1: Interactions among components

therefore the aggregation (and removal) of duplicate events among different
sensors, a situation that is expected to be frequent with Argos and NEMU.

The testing phase will be delivered in two distinct steps, in different
environments and with different purposes: the first one will be done in a
completely virtualized environment and its aim will be to test the main
functionalities of the system, while the second testbed will be more similar
to a real development.

7.1 First testbed

The first testbed will work as a testbench for the basic functionalities of the
i-Code system, to see if everything works correctly and the integration of
the single components flows as expected.

The architecture of the virtualized environment is shown Figure 7.2: six
virtual machines will be installed, each of them in bridge mode and with dif-
ferent IP addresses. Access Miner will be installed on two of them, while one
will host Argos. NEMU will be installed on a yet different machine and will
be set in promiscuous mode to let it sniff the entire traffic flowing through
the virtual network. The remaining two virtual machines will be dedicated

www.icode-project.eu 52 December 30, 2011

7.2. SECOND TESTBED

Figure 7.2: Architecture of first testing environment

to the console (including the entire backend described in Section 6.3) and
to a Windows machine used to generate security events.

7.2 Second testbed

The second step of the testing phase will be conducted in a real environment,
with both the sensors and the console fully functional.

This time, though, NEMU will run on a machine located at FORTH,
while Argos will be hosted on a virtual machine in VU.

www.icode-project.eu 53 December 30, 2011

CHAPTER 7. TESTING PHASE

www.icode-project.eu 54 December 30, 2011

CHAPTER 8

Conclusions

In this deliverable, we described the implementation of the i-Code real-time
malicious code detection system. In particular, we discussed the implemen-
tation of our tools and sensors that are able to detect and analyze malicious
code and Internet attacks in real time. These sensors perform shellcode
detection based on network level emulation, the behavioral analysis of shell-
code and the subsequent classification based on the structure of its unpacked
code, and the detection of malware on the end host by contrasting its behav-
ior against normal behavior patterns from real, uncompromised machines.
Furthermore, we discussed the implementation of a scalable, high/perfor-
mance I/O architecture that we developed to speed up payload execution.

We also discussed the implementation of the i-Code console that gathers
all the relevant events generated by the sensors and presents them to the
user in an understandable and usable way. Therefore our tools and sensors
become part of something bigger, that integrates and correlates information
from different sources to provide the user with a clearer view of what’s going
on in the network.

In the remainder of the i-Code project we will work on the integration of
the implemented components (both sensors and console) into a comprehen-
sive and unified system. We will then evaluate this system in two testing
phases in order to verify its functionality and effectiveness. The first, pre-
liminary testing phase will be performed in a virtualized environment. The
second testing phase will evaluate our system in a real environment.

55

CHAPTER 8. CONCLUSIONS

www.icode-project.eu 56 December 30, 2011

Bibliography

[1] cluster: Cluster Analysis Extended Rousseeuw et al. http://cran.

r-project.org/web/packages/cluster.

[2] fastcluster: Fast hierarchical clustering routines for R and Python.
http://cran.r-project.org/web/packages/fastcluster.

[3] The R Project for Statistical Computing. http://www.r-project.org/.

[4] Anubis. 2007. http://anubis.seclab.tuwien.ac.at.

[5] P. Bania. TAPiON, 2005. http://pb.specialised.info/all/tapion/.

[6] U. Bayer, P. Comparetti, C. Hlauschek, C. Kruegel, and E. Kirda. Scal-
able, Behavior-Based Malware Clustering. In Proceedings of the 16th
Annual Network and Distributed System Security Symposium (NDSS),
2009.

[7] U. Bayer, C. Kruegel, and E. Kirda. TTAnalyze: A Tool for Analyzing
Malware. In Proceedings of the 15th European Institute for Computer
Antivirus Research (EICAR) Annual Conference, 2006.

[8] F. Bellard. QEMU, a Fast and Portable Dynamic Translator. In
USENIX Annual Technical Conference, 2005.

[9] jt. Libdasm, 2006. http://www.klake.org/~jt/misc/libdasm-1.4.tar.

gz.

[10] C. Kolbitsch, P. Milani, C. Kruegel, E. Kirda, X. Zhou, and X. Wang.
Effective and efficient malware detection at the end host. In Proceedings
of the 18th USENIX Security Symposium (Security’09), pages 351–366,
Montréal, Canada, Aug. 2009. USENIX Association.

57

http://cran.r-project.org/web/packages/cluster
http://cran.r-project.org/web/packages/cluster
http://cran.r-project.org/web/packages/fastcluster
http://www.r-project.org/
http://anubis.seclab.tuwien.ac.at
http://pb.specialised.info/all/tapion/
http://www.klake.org/~jt/misc/libdasm-1.4.tar.gz
http://www.klake.org/~jt/misc/libdasm-1.4.tar.gz

BIBLIOGRAPHY

[11] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna. Poly-
morphic worm detection using structural information of executables. In
Symp. on Recent Advances in Intrusion Detection (RAID), 2005.

[12] J. Ma, J. Dunagan, H. J. Wang, S. Savage, and G. M. Voelker. Finding
diversity in remote code injection exploits. In Proceedings of the 6th
ACM SIGCOMM conference on Internet measurement, IMC ’06, pages
53–64, 2006.

[13] S. McCanne, C. Leres, and V. Jacobson. Libpcap, 2006. http://www.

tcpdump.org/.

[14] L. McVoy. The splice I/O model.
www.bitmover.com/lm/papers/splice.ps, 1998.

[15] D. Mueller. fastcluster: Fast hierarchical clustering routines for R
and Python, 2011. http://math.stanford.edu/~muellner/fastcluster.
html.

[16] M. Polychronakis, E. P. Markatos, and K. G. Anagnostakis. Network-
level polymorphic shellcode detection using emulation. In Proceedings
of the Third Conference on Detection of Intrusions and Malware &
Vulnerability Assessment (DIMVA), July 2006.

[17] M. Polychronakis, E. P. Markatos, and K. G. Anagnostakis. Emulation-
based detection of non-self-contained polymorphic shellcode. In Pro-
ceedings of the 10th International Symposium on Recent Advances in
Intrusion Detection (RAID), September 2007.

[18] G. Portokalidis, A. Slowinska, and H. Bos. Argos: an emulator for fin-
gerprinting zero-day attacks. In Proc. ACM SIGOPS EUROSYS’2006,
Leuven, Belgium, April 2006.

[19] R. Wojtczuk. Libnids, 2006. http://libnids.sourceforge.net/.

www.icode-project.eu 58 December 30, 2011

http://www.tcpdump.org/
http://www.tcpdump.org/
http://math.stanford.edu/~muellner/fastcluster.html
http://math.stanford.edu/~muellner/fastcluster.html
http://libnids.sourceforge.net/

	Introduction
	Network-level Emulation
	Scanning Network Traffic
	Shellcode Execution
	Detection Heuristics

	Shellcode Analysis and Classification
	Shellcode Collection
	Shellcode Analysis
	Shellcode Classification

	Behavior-based Detection of Malcode
	Detection Results
	Discussion

	A Scaleable I/O Architecture
	Buffering
	Peek
	Ring buffers
	Indirection
	Size

	Processing and signaling
	Evaluation
	Unix primitives
	Tcpdump and nemulator

	Summary

	Console
	The Big Picture
	Front-End
	Components
	Filtering system

	Back-End
	Web Server and Database
	Prelude

	Testing Phase
	First testbed
	Second testbed

	Conclusions

