
European Commission

Directorate-General Home Affairs

Prevention, Preparedness and Consequence Management of Terrorism
and other Security-related Risks Programme

HOME/2009/CIPS/AG/C2-050
i-Code: Real-time Malicious Code Identification

Deliverable D3: Integration and Pilot Operation

Workpackage: WP3: Integration and Pilot Operation
Contractual delivery date: June 2012
Actual delivery date: July 2012
Deliverable Dissemination Level: Public
Editor Alessandro Frossi (POLIMI)
Contributors All Partners
Internal Reviewers: FORTH

Executive Summary: This deliverable is a technical report on the integration

of the different detection and analysis subsystems, and the test operations of the

unified i-Code system.

With the support of the Prevention, Preparedness and Consequence Management of
Terrorism and other Security-related Risks Programme. European Commission -

Directorate-General Home Affairs†.

†
This project has been funded with the support of the Prevention, Preparedness and Consequence Manage-

ment of Terrorism and other Security-related Risks Programme of European Commission - Directorate-General
Home Affairs. This publication reflects the views only of the author, and the Commission cannot be held re-
sponsible for any use which may be made of the information contained therein.

www.icode-project.eu 2 July 16, 2012

Contents

1 Introduction 7

2 Architectural Overview 9

2.1 General design . 9

2.2 Components . 10

2.2.1 Console . 10

2.2.2 AccessMiner . 12

2.2.3 Argos . 12

2.2.4 Nemu . 13

2.2.5 Anubis . 13

3 Integration 15

3.1 Console . 15

3.1.1 Prelude Back-end . 15

3.1.2 Correlation Rules . 16

3.1.3 Console Virtual Machine 18

3.2 AccessMiner . 19

3.2.1 Model Enforcement 19

3.2.2 Threat Model . 19

3.2.3 Technology Overview 20

3.2.4 Hypervisor Architecture 20

3.2.5 System Call Tracer . 21

3.2.6 Process Revealer . 21

3.2.7 Policies Checker . 22

3.2.8 Prelude Integration . 22

3.3 Argos . 23

3.3.1 Client Integration . 23

3.3.2 Payload Analysis Integration 24

3

CONTENTS

3.3.3 Prelude Integration . 24
3.3.4 Argos Virtual Machine 24

3.4 Nemu . 24
3.4.1 Prelude Integration . 24
3.4.2 Nemu Virtual Machine 25

3.5 Anubis . 25
3.6 Events . 25

4 Testing phase 27
4.1 Testbed Architecture . 27

4.1.1 Exposure Virtual Machine 29
4.2 Event Triggering . 31

4.2.1 Shellcode Choice . 32
4.2.2 Vulnerability Exploitation 32

4.3 Deployment in Real-World Networks 36

www.icode-project.eu 4 July 16, 2012

List of Figures

2.1 Design overview of the i-Code system. 10
2.2 Overall architecture of i-Code console. 11

3.1 Sensor registration procedure 16

4.1 i-Code testbed architecture. 28
4.2 Exposure virtual machine with IceCast2 server running. . . . 30
4.3 Metasploit console with icecast header module 33
4.4 Metasploit icecast header options 33
4.5 i-Code console reacting to Nemu alert in the first testing sce-

nario. 34
4.6 Shellcode submission to Anubis in the first scenario. 34
4.7 Issuing a read operation on monitored folder. 34
4.8 Issuing a write operation on monitored folder. 35
4.9 i-Code console reacting to AccessMiner alert in the first test-

ing scenario. 35
4.10 Detailed report popup for AccessMiner’s events. 35

5

LIST OF FIGURES

www.icode-project.eu 6 July 16, 2012

CHAPTER 1

Introduction

The i-Code project aims to detect and analyze malicious code and Internet
attacks in real time. Its scope includes the detection of attacks in the net-
work and on the host, the analysis of the malicious code, and post-attack
forensics. Thus, the project takes on challenges from different aspects of
operational security and proposes to address them with a number of novel
detection and analysis tools. Due to the variety of the tasks they face, these
tools are very diverse, but they can be interconnected to provide an enriched
understanding of security incidents, by means of the i-Code console.

Deliverable D1: System Design described the design of each i-Code de-
tection and analysis component. Furthermore, the potential synergies be-
tween these components were explored. In deliverable D2: System Imple-
mentation, then, we reported the actual implementation of the tools and the
console carried out the project partners and the first steps taken towards
the final system integration.

In this document we continue from there, going through all the single
tools’ integration processes to finally build a comprehensive system having
the console as its only interface to the external world. We also describe the
testing phase of the i-Code system, which represents its pilot operation.

Outline In this document we detail the integration process of all the com-
ponents into a single system. In Chapter 2, we describe the general archi-
tecture of the system, going through a short overview of the components
involved in the process and how they fit into the big picture. Chapter 3
dwells into the details of how each tool is integrated with the each other,
showing how the information about security threats is collected, saved into
events and dispatched to the manager, before being shown to the final user.

7

CHAPTER 1. INTRODUCTION

Chapter 4, finally, shows the results of this integration process with the
detailed description of the architecture and procedures used in the pilot
operation.

www.icode-project.eu 8 July 16, 2012

CHAPTER 2

Architectural Overview

2.1 General design

The i-Code project aims at detecting and analyzing malicious code and
Internet attacks in real time. This is not, however, the only scope of the
project: it also aims at creating an easy and centralized way to show the
results of those tasks. Therefore, it’s not all about the tools that represent
the “core” of the system; they are, obviously, a big part of the system itself,
but great importance has to be given to the integration of these components
into a bigger picture: a comprehensive system capable of detecting threats
in real-time and present them to the user on a single collector application.
The advantage is clear: the user doesn’t have to directly use the single tools
and interpret their results (often presented in custom formats) but rather
use the console application to have all the security alerts collected and shown
in an easy-to-read format.

The general design is shown in Figure 2.1. All the sensors deployed
within the target network (i.e., AccessMiner, Argos and Nemu) raise alerts
whenever they detect a security threat and dispatch an event towards the
console, giving detailed information about the threat itself. When the con-
sole receives an alert, it saves it to make it persistent and sends the attached
shellcode to a remote installation of Anubis, which further analyzes it giv-
ing back a report identifier. The user is then presented via web interface
the events (in tabular form) and, following a link to Anubis, the previously
created report.

In Section 2.2 a more detailed view of the single components is presented,
while Chapter 3 we will go in detail into the integration process.

9

CHAPTER 2. ARCHITECTURAL OVERVIEW

Figure 2.1: Design overview of the i-Code system.

2.2 Components

2.2.1 Console

This component, though not being “active” within the system (it doesn’t
raise events or detect threats), has a fundamental role in i-Code project: it
has to gather all the relevant events generated by the peripheral sensors and
show them to the user in an understandable and usable way. It is, therefore,
the main component in the integration process, since it is the end-point of
any communication from and to the system: all the tools are supposed to
send their alerts to the console which, in turn, is responsible of sending the
shellcodes to Anubis, receiving the corresponding report id and showing the
alerts to the final user (see Figure 2.1).

Figure 2.2 shows the overall architecture of the i-Code console: the front-
end is a simple web application whose task is to simply show the user the
result of the event analysis process performed by the back-end component.
Here, in fact, the alerts are received and stored in a database; when the
user accesses the web application, then, they are retrieved and sent to the
front-end along with some useful statistics and additional information.

The console was built to be:

www.icode-project.eu 10 July 16, 2012

2.2. COMPONENTS

Figure 2.2: Overall architecture of i-Code console.

www.icode-project.eu 11 July 16, 2012

CHAPTER 2. ARCHITECTURAL OVERVIEW

Portable No constraints on operating system, platform, technology or net-
work topology are imposed to the user: the console was designed to
be a web application to make it usable on any browser, despite of the
underlying software and without proprietary technologies. Also, it’s
not necessary for it to be accessed from the same network of the sen-
sors, or even be in the same network, as long as the components can
communicate with each other.

Lightweight No heavy JavaScript code is used, in order to make the console
more responsive and faster even on less powerful computers or devices.

Usable The console shows the events in tabular form and allows the user
to sort or narrow them using custom filters that can be composed
using the built-in filtering system and modified as needed. Also, some
useful statistics are computed and shown in graphs, so that the user
can visually assess the situation of the system.

Complete All the events along with their details are presented to the user
and additional information can be easily be retrieved by following the
external link to Anubis associated to every alert.

2.2.2 AccessMiner

AccessMiner is a host-based behavioral malware detector designed to cap-
ture the activities of benign programs and to detect certain types of malware
(those tampering with binaries or settings of other applications or the OS).
Accessminer takes a system-centric angle and models the way in which a
broad set of benign applications interact with OS resources. More precisely,
our approach builds an access activity model that captures permissible read
and write operations on files and registry entries.

Our experiments show that the access activity model is successful in
identifying a large fraction of malware samples with a very low false positive
rate. Of course, access activity models cannot detect all possible types of
malware. They can only detect cases in which malicious code attempts to
tamper with the binaries or the settings of other applications or the core OS
itself. As our experiments show, this is true for a large fraction of malware
- after all, malware often attempts to interfere with or modify the execution
of legitimate programs or the OS, or, at the very least, establish a foothold
on the system.

The Accessminer detection component is implemented as a lightweight
hypervisor to prevent tampering from compromised operating systems.

2.2.3 Argos

Argos is a full and secure system emulator designed for use in honeypots.
Argos extends Qemu to enable it to detect remote attempts to compromise

www.icode-project.eu 12 July 16, 2012

2.2. COMPONENTS

the emulated guest operating system. Using dynamic taint analysis it tracks
network data throughout execution and detects any attempts to use them
in an illegal way. When an attack is detected, a footprint of the attack is
logged that includes a possible payload injected by the attacker.

For the i-Code project, Argos is extended and deployed as a client-side
honeypot that detects if websites, visited by clients inside the network, at-
tempt to compromise visitors.

2.2.4 Nemu

Nemu is a network-level attack detector based on code emulation. The prin-
ciple behind its detection approach is that the machine code interpretation
of arbitrary data results to random code which, when it is attempted to run
on an actual CPU, usually crashes soon, e.g., due to the execution of an
illegal instruction. In contrast, if some input contains actual shellcode, then
this code will run normally, exhibiting a potentially detectable behavior.

Nemu is built around a CPU emulator that executes valid instruction
sequences found in the inspected input. Each input is mapped to an ar-
bitrary location in the virtual address space of a supposed process, and a
new execution begins from each and every byte of the input, as the posi-
tion of the first instruction of the shellcode is unknown and can be easily
obfuscated. The detection engine is based on multiple heuristics that match
runtime patterns inherent in different types of shellcode. During execution,
the system checks several conditions that should all be satisfied in order for
a heuristic to match some shellcode.

All heuristics are evaluated in parallel and are orthogonal to each other,
which means that more than one heuristic can match during the execution
of some shellcode, giving increased detection confidence. For example, some
heuristics match the decryption process of polymorphic shellcode, while oth-
ers match operations found in plain shellcode. Polymorphic shellcode usually
carries an encrypted version of a plain shellcode, so the execution of a poly-
morphic shellcode usually triggers both self-decrypting and plain shellcode
heuristics.

2.2.5 Anubis

Anubis is a dynamic malware analysis system that is based on an instru-
mented Qemu emulator. It is offered as an open service through a public
website, where users can submit binaries for analysis and receive reports
that describe the system- and network-level behavior of the analyzed bina-
ries in a human-readable way. For the i-Code project, Anubis was extended
to support the analysis and classification of shellcode.

www.icode-project.eu 13 July 16, 2012

CHAPTER 2. ARCHITECTURAL OVERVIEW

www.icode-project.eu 14 July 16, 2012

CHAPTER 3

Integration

3.1 Console

The console is the main integration point of the i-Code system since it’s
the only one that will be shown to the user and will take care of all the
communication between the user and the peripheral components. Its archi-
tecture was accurately described in deliverable D2: System Implementation
so, in this Section, only some components will be further detailed to give
the reader an insight on how the single part of the tool cooperate to make
the integration more smooth.

3.1.1 Prelude Back-end

The Prelude server is the real focus point of the whole integration; this
component is responsible of:

• receiving the alerts from the tools

• storing all the information in a local database

• attaching geographical information to each event

• sending the shellcodes (attached to the events) to Anubis

Since this server handles all the relevant information passing through
the system, it is crucial that it is correctly built and configured keeping
security as a first requisite. The database, in fact, is local and not accessible
by processes not running on the console virtual machine; the password,
also, is known to the Prelude instance and to the working plugins only. To
increase security between the sensors and the server, the sensor registration

15

CHAPTER 3. INTEGRATION

(a) Sensor side (b) Server side

Figure 3.1: Sensor registration procedure

process (shown in Figure 3.1) requires the interaction of both parties: the
server listens for new registration requests and creates a one-time password
to be used as confirmation; the client, instead, generates a 2048 bit RSA
key to encrypt communications and requires the user to provide that same
password given by the server; this ensures that a human operator is taking
care of registering a known sensor.

When a sensor raises an alert (see tools’ related Sections to know how an
event is created and sent), it is sent to the Prelude Manager process running
on the console machine. This process saves the alert in the database in a
fully normalized form (which also results difficult to be accessed by a human
operator) and, at the same time, it forwards it to the registered and enabled
plugins. While there are many built-in plugins bundled with Prelude, none
of them was used since they provide functionalities not relevant to the i-
Code system; two custom scripts, instead, were created and registered (see
Section 3.1.2 for details). Each script receives as input every alert received
by the manager and performs on them the small task it is designed for: this
can be the modification of the alert (or any field) or the creation of a new
correlated alert, which will be sent to the manager and treated as any other
new event.

When the front-end needs to show the events to the user, it uses a
custom script to retrieve them directly from the database, without creating
unnecessary load on the manager.

3.1.2 Correlation Rules

Correlation rules (or plugins) are scripts that are registered on the manager
to be eligible to have all the events forwarded and made accessible to them.

www.icode-project.eu 16 July 16, 2012

3.1. CONSOLE

Their task is to perform some minor operations on such events (e.g., checking
if the source address is in some specified networks) and, if necessary, raise
additional events to the manager. This is particularly useful when dealing
with contexts: if, for example, 10 login failed events are detected in a 3
minutes period, a new Possible Brute Force event can be raised by a rule.

As said in Section 3.1.1, no built-in rules were used since they imple-
mented functionalities that were not needed by the i-Code system. Two
additional custom rules, instead, were created and registered. These plug-
ins, however, deviate from the standard plugin design: they do not create
additional events but rather modify incoming events; this is not usually al-
lowed, anyway, because in a standard Prelude deployment all the events
have to be securely stored in the database and cannot be modified.

In our case, however, the goal of the two plugins is to augment the in-
formation contained in the event and it is, therefore, necessary to modify it
after being stored in the database. Since there’s no API provided by Prelude
for this (while there is for context manipulation and event creation), we had
to do it manually: when a tool creates an alert, it stores a beacon in each
additional field: this beacon is simply a random string that will be substi-
tuted by the new information once the alert is delivered to the correlation
rule. This trick was made necessary because the information stored in the
database is fully normalized and fragmented over many tables: retrieving
the entire field set for an event is not a simple matter of joining some tables
but requires a much greater effort; the use of random beacons (long enough
to avoid unfortunate collisions) allows to pin-point the interesting data in
the database and modify it in a completely transparent way.

Source IP Geolocation Plugin

The Source IP Geolocation Plugin uses the event source IP to geographically
locate the origin of the security threat.

The address contained in the alert.source(0).node.address(0).address field
of the IDMEF event (see Section 3.6) translated into a country code: the
country from where the packet was sent. Once this information is available,
the plugin looks for the corresponding beacon in the additional data table
and substitutes it with the correct information.

In this way, the information is added to the alert, instead of creating a
brand new one.

Anubis Submitter Plugin

The Anubis Submitter Plugin is the real integration point between the i-
Code system and the remote Anubis application. It works just like the
Source IP Geolocation Plugin: it retrieves the relevant information from the

www.icode-project.eu 17 July 16, 2012

CHAPTER 3. INTEGRATION

alert, uses it to collect new additional data and stores these new information
in the alert itself by modifying the beacon in the database.

The relevant piece of data, however, is not the source address, but rather
the shellcode associated to the detected security threat; as described in
Section 3.6, in fact, each tools attaches the attack shellcode (encoded in
base64) to the IDMEF alert in the alert.additional data(2).data field. This
is then sent to Anubis via the Python script provided on the website1 and
the resulting report ID is written on the database in place of the beacon
saved in the alert.additional data(1).data field.

The result is that this plugin allows to further analyze the shellcode and
retrieve the corresponding report directly from the Anubis website.

3.1.3 Console Virtual Machine

All the softwares that are part of the console component in the i-Code system
are hosted on the same virtual machine. This choice was made for two main
reasons:

• keeping all the components on the same machine does not require them
to be accessible by processes running on other machines. Obviously,
both the Prelude server and the web server have to be accessible from
outside, but at least there is no need to expose the database and open
a possible security hole. It would be, however, possible to host the
database or any other component (e.g. the Prelude Correlator tool)
on other machines to balance the load on the console

• for testing purposes the system was not stressed enough to make a
strong load-balancing a necessity: the frequency of incoming alerts
was low enough to keep the Prelude server and the database far under
their capacity limits.

There were no particular hardware requisites so a single core machine
with 1 Gb RAM was instantiated. The operating system is the one that
offers both the maximum compatibility with the Prelude software (with
pre-compiled packages offered by standard repositories) and easiness of use:
Ubuntu Desktop 11.10 64-bit. The only packages needed to make the console
work were the following:

Prelude Libraries The libraries necessary to make the Prelude architec-
ture work: they handle all the communications between the manager
and the sensors, including cryptography and heartbeats.

Prelude Manager This is the software component that receives all the
events from the peripheral sensors. It relies on the above libraries

1http://shellcode.iseclab.org/Resources/submit_to_anubis.py

www.icode-project.eu 18 July 16, 2012

http://shellcode.iseclab.org/Resources/submit_to_anubis.py

3.2. ACCESSMINER

and a storage connector, which, in our case, is a MySQL database
connector; the latter is in charge of writing and reading data from the
non-volatile storage.

MySQL Database The DBMS used to save all the alerts: it does not have
to be exposed to external connections because it is always accessed by
local processes: the manager, the web application back-end and the
correlation rules.

Prelude Correlator This software registers and runs the Geolocation and
Anubis Submitter plugins: it is registered as a sensors with “forward”
permissions on the manager, which means that every alert received
by the Prelude system is sent immediately to the rule chain in the
correlator. This component has also direct access to the database to
modify the events adding useful information.

Python + Flask The back-end logic and the front-end web application
are both written using the Flask framework for Python, which is light
enough for the console application.

3.2 AccessMiner

The model enforcement component of AccessMiner was redesigned to in-
crease its security by moving it at the hypervisor level. In addition, Ac-
cessMiner was extended with a new module to communicate to the prelude
system. These modifications are explained in the rest of the section.

3.2.1 Model Enforcement

Our new enforcement model exploits the hardware virtualization support
available in commodity x86 CPU. By using the VMM extensions we designed
a tamper-resistant detector that is able to control OS operations and verify
the policies derived from the AccessMiner system.

3.2.2 Threat Model

The threat model under which our enforcement model runs considers a very
powerful attacker. The attacker can operate with kernel-level privileges. On
the other side the attacker cannot perform hardware-based attacks (e.g., a
DMA-based attack) and he cannot tamper the hypervisor operations. We
assume that our hypervisor starts during the boot process of the machine
and it is the privilegest hypervisor on the system.

www.icode-project.eu 19 July 16, 2012

CHAPTER 3. INTEGRATION

3.2.3 Technology Overview

Before describing how our detector works we give a brief introduction about
Intel virtualization.

The main characteristic of Intel VT-x technology is supporting new VMX
mode of operation. When in VMX mode, the processor can be either VMX
root or VMX non-root operation. The behavior of the processor in VMX
root operation is similar to the one that operates in normal mode expect
of using a new set of instructions called VMX instructions. The behavior
of the processor in non-root operation is limited in terms of controlling the
access to the resources even when the CPU is running in ring 0 (highest
privilege).

The VMM can monitor operations on critical resources without mod-
ifying the code of the guest OS. Moreover because VMX non-root mode
operation includes all four IA-32 privileges levels (rings) guest software can
run in the original rings in where designed to be run.

A processor which has been turned on in a normal mode can be made
to enter VMX root operation by executing vmxon operation. The virtual
machine monitor VMM running in root operation sets up the environment
and initiates the virtual machine by executing vmlaunch instruction.

When a VMM is running, the CPU switches back and forth between
non-root and root mode: the execution of the virtual machine might be
interrupted by an exit (VMexit) to root mode and subsequently resumed by
an enter to non-root mode (VMentry).

The technology provides a data structure called the VMCS (virtual ma-
chine control structure) that embeds all the information needed to capture
the state of the virtual machine or resume the virtual machine. The var-
ious control fields determine the conditions under which control leaves the
virtual machine (VMexit) and returns to the VMM, and define the actions
that need to be performed during VM entry and VM exit.

Various events cause the processor to leave control to VMM in root
operation. The processor can also exit from the virtual machine explicitly
by executing vmcall instruction. In particular, for our detector model we are
interested to exploit the vmcall instruction for intercepting the system call
event. More details about the technique are explained in the next sections.

3.2.4 Hypervisor Architecture

The new Detector model is composed by three components: System call
Interceptor, Process Revelear and Policies Checker. The outputs of all the
components are combined together to check the policies derived by Access-
Miner system.

www.icode-project.eu 20 July 16, 2012

3.2. ACCESSMINER

3.2.5 System Call Tracer

The core of the system is represented by System Call Tracer. In order
to intercept the system call we monitor the sysenter/systexit instructions.
Whenever a system call is issued by a process a sysenter instruction is in-
voked. The sysenter instruction refers to the MSR register that contains the
SYSENTER EIP, the instruction pointer that will point to a small stub that
handles the invocation of the appropriate system call handler. When the
system call handler is terminated the control flow execution returns into the
stub, at this point sysexit instruction is issued and the control-flow returns
to the user space application.

In order to bring the execution flow inside the hypervisor we need to
switch from VMX non-root mode to VMX root mode. To this end we sub-
stituted the SYSENTER EIP value into the MSR register in order to point
to the vmcall instruction. By using this hooking technique the hypervisor is
able to intercept every sysenter and sysexit performed on the system. When
a sysenter is invoked the hooking code intercepts the control-flow and parses
the parameters according to the sort of the operation. Before sending the
information to the Policies Checker, the system needs to check the successful
execution of the operation and the return values (sysexit interception). In
case the operation fails, the component does not produce any output. In the
other case, the System Call Tracer invokes the Policies Checker component
and it provides all the system call information: system call type, parameters,
and return values.

3.2.6 Process Revealer

Another important information that we need to provide to the Policies
Checker is the name of the process. To this end we utilize a cache system
that is able to associated the CR3 value to the process’s name. In particular
every time a process is created or destroyed the system updates the process
cache with the new information (CR3, process). From technical point of
view we utilize the same interception technique deployed for System Call
Tracer. In particular the system intercepts the sysexit for create/terminate
process operation and queries the EPROCESS structure in order to obtain
the association between the process’s name and the CR3 value. The Pro-
cess Revealer component will update the cache information accordingly. It
is important to note the cache memory system can speed up our detection
mechanism since the Policies Checker needs the information CR3, process
name for applying the policies rules. Without cache system, every time a
system call is invoked, the Policies Checker should query the EPROCESS
structure and retrieves this information. In case of using the cache system
the information can be obtained in constant time (e.g, hash table).

www.icode-project.eu 21 July 16, 2012

CHAPTER 3. INTEGRATION

3.2.7 Policies Checker

The main goal of this component is to check the policies derived from the Ac-
cessMiner system and creates an alert in case some of them are violated. In
particular, in order to check the policies we deployed an hash table memory
structure where the resources name (files pathname, registries pathname)
is the key of the hash table and the element is represented by the name of
the processes with their own permission on the resources. We recognize two
main phases for the Policies Checker: Initialization and Detection Phase.
The initialization phase occurs after the loading of the hypervisor kernel
module. The main task of such a phase is to initialize the memory struc-
tures that will be used for the detection phase. The phase works as follows.
First the Hypervisor Kernel Module reads the signatures from a configu-
ration file. Then, whenever a signature is loaded the full-pathname of the
resources is extracted and utilize as a key of the hash table in order to store
the following information: the list of the processes that can get access to
the resources and their own access permissions on that resources.

After the initialization of the hash memory structure a memory handles
structure is created. This memory structure is used in order to track down
the different operations on the resources (e.g., files and registries) by looking
up the full-pathname and the resource handle. In particular every time a
resource is opened we track down the handle associated to the resource full-
pathname and we store it in the memory structure. After wards when some
operations occurs on the resource we link the resource full-pathname to the
handle and we pass this information to the detection module. Every time
an handle is closed we remove it from the list.

During the detection phase, The System Call Tracer invokes the Policies
Checker and sends the system call information. At this point the Policies
Checker by using the full pathname as the key of the hash table it retrieves
the list of the processes and the resource access permissions. It also queries
the process cache in order to get the process’s name that performed the
system call. When obtained all the information it scans the list of the
processes for searching the actual process name. If the process name is
found, the Policies Checker checks the permission associated to it and if
there’s a mismatch with the permission it reports a warning. If the process
is not present in the process list the Policies Checker reports a warning to
the system as well. In the other cases it does nothing.

3.2.8 Prelude Integration

Whenever a warning is produced the detector system sends the output of
the warning to the serial port where a receiver (python server) is in charge
to decode the message according to the Prelude standard format and send
it back to the console. The Prelude standard format contains 8 fields with

www.icode-project.eu 22 July 16, 2012

3.3. ARGOS

different information related to the type of warning. In the following we
describe the meaning of each field for AccessMiner System:

• alert.source(0).node.address(0).address: the IP of the machine where
the attack is performed. For AccessMiner the source/destination nodes
are the same.

• alert.target(0).node.address(0).address: same as the source IP.

• alert.analyzer.name: “AccessMiner” string.

• alert.additional data(3).data: process Name that gets access to the
resource.

• alert.additional data(4).data: name of the resources involved in the
operation.

• alert.additional data(5).data: system call that operates on the re-
source.

• alert.additional data(6).data: permissions required by the operation.

• alert.additional data(7).data: permissions for the resource according
to AccessMiner’s policies.

3.3 Argos

The integration of Argos with the i-Code system required three extensions.
The first extension, the HTTP proxy module, enables Argos to verify if
clients have been compromised by visiting a malicious website. The second
extension, the payload collector, allows Argos to extract an injected payload
from the memory footprint logged after detection of an attack. The last
extension, the Prelude proxy module, enables Argos to transparently com-
municate its findings to the Prelude Server. All extensions will be briefly
discussed in the following sections.

3.3.1 Client Integration

The role of Argos in the i-Code system is to detect, a posteriori, if clients
inside the network have been compromised by visiting a web page. Argos
requires integration with clients inside the network to collect the URLs of
the visited websites.

The HTTP proxy acts as an intermediary for request from clients inside
the network and stores the requested URLs inside a queue. Argos monitors
this queue and schedules a client-side honeypot instance for each URL in
the queue.

www.icode-project.eu 23 July 16, 2012

CHAPTER 3. INTEGRATION

3.3.2 Payload Analysis Integration

The i-Code system has the capability of submitting payloads to Anubis for
in-depth threat analysis. This capability of the i-Code system requires a
payload to be a base64 encoded binary blob.

The memory footprint logged by Argos contains the required informa-
tion, but in a different format. The payload extractor module is able to
find a payload inside this footprint, by using information collected during
the attack, and extract it. Finally, after a successful extraction the payload
module returns a base64 encoded payload.

3.3.3 Prelude Integration

For the integration with Prelude, Argos is extended with a Prelude proxy.
The proxy model allows for transparent scaling of capacity if required by an
increase or decrease of client requests. The Prelude proxy acts a client to
the Prelude Manager and is responsible for transparently forwarding events
from Argos using the IDMEF format, as defined in deliverable D2: System
Implementation.

3.3.4 Argos Virtual Machine

The virtual machine is configured to run the aforementioned HTTP proxy
and Prelude proxy, as well as a Argos driver and a single Argos instance.

The Argos driver is responsible for orchestrating the website verification
process. For each URL collected by the HTTP proxy, the Argos driver
schedules an Argos instance, configured as a client-side honeypot, and directs
it to the website that requires verification. In the test phase the Argos driver
schedules only one Argos instance, but the pool of Argos instances can be
scaled linearly by distributing multiple instances over multiple servers.

In case of an attack detection, the Argos driver obtains the collected
information from the Argos instance and invokes the payload collector to
find an injected payload. When the payload collector finishes, the Argos
driver submits everything to the Prelude proxy server, which sends an event
to the Prelude Manager.

3.4 Nemu

3.4.1 Prelude Integration

As part of the i-Code system, Nemu was extended with a new module that
acts as a client for the Prelude manager and submits to it all detected
events. For each attack, Nemu stores in a local SQLite database all the
relevant information, such as the date and time of the incident, the source
and destination IP address and port, the type of the identified shellcode and

www.icode-project.eu 24 July 16, 2012

3.5. ANUBIS

its execution trace, MD5 sums of the shellcode and the stream chunk that
contained it, and other details. It also extracts the raw shellcode from the
input stream and stores it into a separate file for further analysis.

For performance and modularity, Nemu’s Prelude client module runs as
a separate process, and does not require any form of communication with
the actual Nemu detector. This is achieved by relying only on Nemu’s lo-
cal database for retrieving new incident alerts. The client module monitors
for changes in Nemu’s database using Pyinotify, a Python module for mon-
itoring filesystem events. Whenever a new record is written in the main
“alerts” table in the database, the module is triggered and pulls the neces-
sary information for submission to the Prelude manager. It then constructs
an IDMEF message according to the format specified in deliverable D2:
System Implementation, and transmits it to the Prelude manager. All the
relevant info is retrieved from the database, except the extracted shellcode,
which is read directly from its own file. The shellcode is included in the
field alert.additional data(2).data of the IDMEF message in base64
encoding for subsequent analysis by Anubis, as described in Section 3.6.

3.4.2 Nemu Virtual Machine

Nemu is running on a separate virtual machine, and monitors all traffic
reaching the main network interface, which is set to promiscuous mode.
Nemu has been configured to scan both directions of each connection, so
as to detect both client-side and server-side attacks. All attack incidents
are logged in the local database, and are then transmitted to the Prelude
manager by Nemu’s Prelude client module, which also runs on the same
virtual machine.

3.5 Anubis

The Anubis malware analysis sandbox for analyzing shellcodes is deployed
at TUV and is accessed through a public website2. Additionally, a Python
script facilitates the automatic submission of shellcodes. For each successful
submission of a shellcode, Anubis returns a unique report ID, with which
the analysis report can be retrieved, once the analysis is finished.

3.6 Events

The events are the only mean for the sensors to communicate with the man-
ager and pass it the information about security threats they detected; they
comply to the Intrusion Detection Message Exchange Format3 (IDMEF)

2http://shellcode.iseclab.org
3http://www.ietf.org/rfc/rfc4765.txt

www.icode-project.eu 25 July 16, 2012

http://shellcode.iseclab.org
http://www.ietf.org/rfc/rfc4765.txt

CHAPTER 3. INTEGRATION

which defines both data formats and exchange procedures for intrusion de-
tection and response systems. The data format offers a skeleton structure
for events but also allows some degrees of freedom in customizing it; in the
i-Code system we took this liberty to customize alerts to our need, which
resulted in the structure described in deliverable D2: System Implementa-
tion.

The modification that most impacts on the integration process is the
addition of three custom fields besides the standard ones:

alert.additional data(0).data This field will contain the country the source
IP belongs to. This information, however, is not immediately available
but will be filled after the alert will be sent to the Source IP Geoloca-
tion Plugin (see Section 3.1.2); to ensure that the data will be written
in the correct event in the database, the sensors save a random string
in this field, leaving it behind as a beacon to allow the correlation rule
to point to the correct record when the source country is available.

alert.additional data(1).data This field is also filled with a random bea-
con but the information it is reserved to is different: the Anubis Sub-
mitter Plugin, in fact, will use this slot to save the report ID obtained
after sending the shellcode to the remote installation of Anubis.

alert.additional data(2).data This field contains the base 64 encoded
shellcode that was part of the attack and that was detected and saved
by the tools. This is the data that will be sent to Anubis for further
analysis.

www.icode-project.eu 26 July 16, 2012

CHAPTER 4

Testing phase

This chapter is entirely dedicated to i-Code system testing phase. Section 4.1
describes the architecture build to verify if the tools correctly detect and
signal security threats and if the console is able to gather such events and
show them to the user in a fast and easy way.

Section 4.2, instead, shows how the testing phase was conducted in every
aspect. Each step, in fact, is the result of a careful planning aimed at
reducing the possible external factors that could compromise the experiment
and, at the same time, keeping the attack as close to reality as possible: this
means that the vulnerable software, the exploit and the deployed shellcode
are not custom and were not coded purposely for this test.

4.1 Testbed Architecture

The testbed for the i-Code system is a purely virtual environment made
of the machines described in Chapter 3. All the tools, exception made for
Anubis, are hosted on dedicated machines and connected to each other via
a dedicated LAN network: in fact, while Argos, AccessMiner and Nemu do
not rely on external data and computational power, Anubis takes advantage
of remotely deployed workers performing the relevant shellcode and malware
analysis and from previously analyzed samples. As a consequence we decided
to keep Anubis the way it was meant to be since the beginning: a remote
web service.

This type of architecture was chosen because it has some advantages:

Manageability Keeping the virtual machines in the same environment
made it faster to deploy them and easier to manage them; the pres-
ence of a single entry point for all the configuration needs was also

27

CHAPTER 4. TESTING PHASE

Figure 4.1: i-Code testbed architecture.

beneficial, since the partners don’t have to deal with access and OS
permission issues and could instead focus on integrating the tools.

Network problems resilience During the integration of the entire sys-
tem into i-Code the main focus had to be maintained on the devel-
opment and debugging of the tools: network problems not directly
related to the development phase would have been a source of delays
and would have need additional efforts to be solved. This architecture
partly solves the issue by having a single virtual network to be man-
aged and troubleshooted, thus relieving the partners from this burden.

Locality Some of the tools need to work in promiscuous mode and be
therefore able to read the traffic originating from and going to other
machines in the system. On a distributed testing environment this
constraint would have posed some issues on the placement of the ma-
chines. This, however, wouldn’t be a problem in a real deployment
since the sensors would likely be in the same network of the monitored
machines and not remotely located.

The overall architecture is described in Figure 4.1: there’s a total of
six virtual machines hosted on a single physical machine, including a VM
created for testing purposes only (described in Section 4.1.1).

The host is has the following configuration:

Model: HP Z210 Workstation

CPU: Intel® Xeon(R) CPU E31245 @ 3.30Ghz x 4

www.icode-project.eu 28 July 16, 2012

4.1. TESTBED ARCHITECTURE

RAM: 16 Gb

Disk: 1 Tb

OS: Ubuntu Desktop 11.10 64-bit

Environment: VMware® Workstation 8.0.2

Because of some architectural constraints, VMWare Workstation 8 was
used to host the virtual machines: AccessMiner, in fact, relies on nested
virtualization to run and therefore has to be able to access particular CPU
technologies even in a virtual environment. For this same reason we also
had to be sure that the host CPU provided two key features: Extended Page
Tables (EPT) and Intel Virtualization Technology (VT-x)

Virtual LAN. As said, tools like Nemu had to be able to enter promis-
cuous mode to read traffic originating from and going to other virtual ma-
chines. Also, to avoid network noise from external machines, the network
had to be restricted to those guests only. For this reason a virtual LAN was
created and used for the entire environment and VMWare was set to allow
VMs to access promiscuous mode and get traffic not addressed to them.

The only other architectural constraint to fulfill was letting the system
have access to the Internet to send shellcodes to Anubis and get back their
report id. In addition, for testing purposes, the vulnerable virtual machine
(Exposure) needed Internet access to allow droppers or particular shellcodes
to download data from the web to the machine and trigger some specific rules
in the monitoring tools. Therefore both the Console and Exposure machines
were allowed to be NAT ted through the host network connection.

4.1.1 Exposure Virtual Machine

In order to fully test the i-Code system including the peripheral tools, the
best choice would be to deploy the system and wait for some random attack-
ers to drop a shellcode onto the vulnerable decoy machine. This, however,
would be a time-consuming task, so the next best choice was taken: simulate
a real attack on a target machine in the virtual environment.

For this purpose a dedicated VM was created with Windows XP Service
Pack 3 as operating system. Instead of exploiting an OS vulnerability,
however, we chose a vulnerable software as the target of our testing phase:
IceCast2 2.0 1 (see Figure 4.2), a free software for streaming multimedia was
installed on Exposure machine. No other software was installed.

The vulnerability that was exploited in IceCast server was a buffer over-
flow in the request header, described in CVE-2004-1561 2. Since there’s an

1http://www.icecast.org/
2http://www.cvedetails.com/cve/CVE-2004-1561/

www.icode-project.eu 29 July 16, 2012

http://www.icecast.org/
http://www.cvedetails.com/cve/CVE-2004-1561/

CHAPTER 4. TESTING PHASE

Figure 4.2: Exposure virtual machine with IceCast2 server running.

www.icode-project.eu 30 July 16, 2012

4.2. EVENT TRIGGERING

existing Metasploit3 module to exploit this vulnerability and drop a shell-
code into the vulnerable machine, this vulnerability was the best candidate
to test the i-Code system.

In order to test AccessMiner functionalities, its client was installed on
this machine: this is the component responsible of detecting policy violations
and notify them. Also, to avoid noise on the console reducing false positives,
a very minimum set of policies was configured; in particular a folder called
vulnfolder was created in the root level of the hard drive and AccessMiner
was configured to grant read permissions and revoke write permissions to
all processes for that directory.

Finally, for Argos to work properly, the Argos virtual machine was set
as Internet proxy to allow it to intercept all the traffic going from and to
the Exposure VM and identify possible threats.

4.2 Event Triggering

The real testing phase takes place in three different steps:

Shellcode choice The shellcode to be used for the test attack must be
chosen carefully since it has to trigger all the tools involved in the
process, namely Argos, Nemu and AccessMiner. While the first two
tools should not have problems in detecting any kind of shellcode going
through the network, allowing us to use Metasploit built-in shellcode
payloads, AccessMiner raises alerts on predefined system policy vio-
lations. For this reason, we couldn’t use any shellcode but we had to
find one capable of violating such policies.

Vulnerability exploitation Once a suitable shellcode is chosen, the vul-
nerability described in Section 4.1.1 has to be exploited in order to be
able to deploy the payload and let the tools react to the situation.

Console verification If all the tools correctly react to the shellcode sent
to the vulnerable machine, the console must correctly and timely show
the generated alarms.

Test scenario This scenario evaluates how the system reacts to attack
launched against hosted application: on the Exposure VM is installed a vul-
nerable streaming server (IceCast server) answering HTTP requests coming
from clients outside the network. For this test we pretended the host ma-
chine to be an external client and launched the attack against the server,
dropped a shellcode and tried to manipulate data on the vulnerable system:
both Nemu and AccessMiner reacted to the attack.

3http://www.metasploit.com

www.icode-project.eu 31 July 16, 2012

http://www.metasploit.com

CHAPTER 4. TESTING PHASE

In the following sections the three phases previously defined will be de-
scribed.

4.2.1 Shellcode Choice

The shellcode that was chosen was the one that allowed the highest degree
of freedom on the vulnerable machine and allowed us to know exactly when
the AccessMiner policies were violated. Therefore, for testing, we used a
simple shell bind tcp shellcode, which makes the vulnerable machine spawn
a shell and connect it to a socket purposely created on the attacker’s side.

As a result, if the exploit was successfully landed, we had full remote
control over the Exposure VM and could easily write a file in the directory
configured to have only read-permissions, thus trigger AccessMiner.

4.2.2 Vulnerability Exploitation

The icecast header in Metasploit was built to exploit the vulnerability de-
scribed in Section 4.1.1 and it was therefore the best choice to deploy a
shellcode into the vulnerable machine.

Since the idea was to conduct the attack in realistic condition, as far as
possible, the Metasploit software was not executed on a virtual machine in
the virtual environment but rather on the host machine. No other external
machines were used, so that no exposure was given to the test environment
allowing external factors to possibly compromise the experiment.

After starting the IceCast2 vulnerable server on the target machine, we
run the Metasploit console on the host machine and load the icecast header
module, as shown in Figure 4.3; we then set the required options for the
module: the only one needed at this point is the RHOST, set to the Exposure
VM network address (172.0.0.50) (Figure 4.4).

After loading the payload chosen in Section 4.2.1, the attack is success-
fully launched to the vulnerable machine. Nemu should have now detected
the shellcode going through the network while AccessMiner should have seen
some policy violations and therefore raised an alarm. Therefore both Nemu
and AccessMiner should have sent security events to the console, which can
now display them on the web application.

4.2.2.1 i-Code Console reaction

Right after launching the attack, Nemu correctly detects an attack originat-
ing from the host machine client (with IP 172.0.0.1 – mapped as “Reserved”
– and random port higher than 1024) and aimed at the Exposure VM server
(IP 172.0.0.50 and port 8000), as shown in Figure 4.5. Also, the shellcode
is sent to the Anubis server, where the in–depth analysis is immediately
started (see Figure 4.6).

www.icode-project.eu 32 July 16, 2012

4.2. EVENT TRIGGERING

Figure 4.3: Metasploit console with icecast header module

Figure 4.4: Metasploit icecast header options

www.icode-project.eu 33 July 16, 2012

CHAPTER 4. TESTING PHASE

Figure 4.5: i-Code console reacting to Nemu alert in the first testing scenario.

Figure 4.6: Shellcode submission to Anubis in the first scenario.

Once the shell is spawned, we have to test AccessMiner’s capability of
detecting the policy violation without raising false positives; therefore, as
a first test, we issue a type command on a file in the monitored folder and
see if this action is erroneously flagged as not allowed (see Figure 4.7). The
console does not report any policy violations on this action.

When, instead, the same file is written (Figure 4.8), AccessMiner raises
an event, as shown in Figure 4.9. In this case the “detail” icon opens a
popup with detailed information about the violation (Figure 4.10).

Figure 4.7: Issuing a read operation on monitored folder.

www.icode-project.eu 34 July 16, 2012

4.2. EVENT TRIGGERING

Figure 4.8: Issuing a write operation on monitored folder.

Figure 4.9: i-Code console reacting to AccessMiner alert in the first testing
scenario.

Figure 4.10: Detailed report popup for AccessMiner’s events.

www.icode-project.eu 35 July 16, 2012

CHAPTER 4. TESTING PHASE

4.3 Deployment in Real-World Networks

The diverse set of detection approaches that comprise the i-Code architec-
ture allows it to be adopted to fit different operational needs and deployment
scenarios. As part of the testing phase, two instances of the i-Code system
have been installed and are operational in real networks.

The first instance has been installed at the University of Crete, and
the second one at the FORTH-ICS. In both deployments, Nemu is used
to scan the traffic that goes through the main gateway that connects each
organization’s campus to the Internet. Nemu has been configured to scan
the client-to-server data of all established TCP connections, irrespectively
of the destination port (service). In both cases, all detected attacks are
submitted to Anubis for further analysis.

Due to the more strict firewall configuration policies that are in place at
FORTH-ICS, the number of detected incidents for the past month is about
three per week, and are mostly related to non-managed guest devices that
connect to the local network through the provided public WiFi. In contrast,
the more open-access nature of the University network results to services
being exposed to the public Internet, and consequently to a higher number
of attacks against local servers. The number of detected incidents at the
University of Crete for the last three months is about two incidents per
day.

www.icode-project.eu 36 July 16, 2012

	Introduction
	Architectural Overview
	General design
	Components
	Console
	AccessMiner
	Argos
	Nemu
	Anubis

	Integration
	Console
	Prelude Back-end
	Correlation Rules
	Console Virtual Machine

	AccessMiner
	Model Enforcement
	Threat Model
	Technology Overview
	Hypervisor Architecture
	System Call Tracer
	Process Revealer
	Policies Checker
	Prelude Integration

	Argos
	Client Integration
	Payload Analysis Integration
	Prelude Integration
	Argos Virtual Machine

	Nemu
	Prelude Integration
	Nemu Virtual Machine

	Anubis
	Events

	Testing phase
	Testbed Architecture
	Exposure Virtual Machine

	Event Triggering
	Shellcode Choice
	Vulnerability Exploitation

	Deployment in Real-World Networks

