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ABSTRACT

Network intrusion detection systems are faced with the challenge
of identifying diverse attacks, in extremely high speed networks.
For this reason, they must operate at multi-Gigabit speeds, while
performing highly-complex per-packet and per-flow data process-
ing. In this paper, we present a multi-parallel intrusion detection
architecture tailored for high speed networks. To cope with the
increased processing throughput requirements, our system paral-
lelizes network traffic processing and analysis at three levels, us-
ing multi-queue NICs, multiple CPUs, and multiple GPUs. The
proposed design avoids locking, optimizes data transfers between
the different processing units, and speeds up data processing by
mapping different operations to the processing units where they
are best suited. Our experimental evaluation shows that our proto-
type implementation based on commodity off-the-shelf equipment
can reach processing speeds of up to 5.2 Gbit/s with zero packet
loss when analyzing traffic in a real network, whereas the pattern
matching engine alone reaches speeds of up to 70 Gbit/s, which
is an almost four times improvement over prior solutions that use
specialized hardware.
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C.2.0 [General]: Security and Protection

General Terms

Design, Performance, Security
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1. INTRODUCTION
Network intrusion detection systems (NIDS) are commonly clas-

sified into anomaly-based and signature-based systems. Anomaly-
based systems are used to detect unknown attacks, but usually gen-
erate false positives [8,42]. In contrast, signature-based systems are
typically more precise, but cannot detect attacks for which they do
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not have a signature, and therefore, they require continuous updat-
ing [33, 36]. Due to their low false-positive rate and their higher
performance, signature-based detection approaches are the basis
for the majority of the existing NIDSs. Unfortunately, as the speed
of network links increases, keeping up with the inspection of all
traffic becomes quite challenging.

A number of approaches have been proposed to address the prob-
lem of matching stateful signatures in high-speed networks, both
hardware and software based. Hardware-based implementations
offer a scalable method of inspecting packets in high-speed envi-
ronments [6,9,10,24,26,27,29,45]. These systems usually consist
of special-purpose hardware, such as FPGAs, CAMs, and ASICs,
that is used to process network packets in parallel. Although the
use of specialized hardware achieves high processing rates, most
implementations require custom programming, and are usually tied
to the underlying device. As a consequence, they are very difficult
to extend and reprogram. Additionally, most of these approaches
focus on the raw inspection of the network packets alone, with-
out implementing crucial functionalities of modern NIDSs, such as
protocol analysis and application-level parsing.

In contrast, software implementations based on commodity pro-
cessors are low-cost and easily programmable. The advent of multi-
core processors has lead researchers to employ them for high-speed
traffic processing. Previous approaches have focused extensively
on multi-core general-purpose processors [19, 20, 37, 39, 47], in
which the NIDSs operations are decomposed to different process-
ing elements. Graphics processors have also been used to boost
computationally intensive tasks, like string searching [18, 41, 48]
and regular expression matching [49].

The majority of these approaches take advantage of parallelism
only at a single level, either through traffic splitting [21, 47], flow-
level parallelization [19, 20, 39], or content inspection [18, 41, 48,
49]. In practice, however, the performance of modern NIDSs de-
pends on several operations, including packet capture and decod-
ing, TCP stream reassembly, and application-level protocol analy-
sis. A scalable architecture must exploit parallelism for each op-
eration individually, otherwise Amdahl’s Law will fundamentally
limit the performance that the hardware can provide [34].

In this paper, we present MIDeA, a new model for network in-
trusion detection systems, which combines commodity, general-
purpose hardware components in a single-node design, tailored for
high-performance network traffic analysis. Our system takes ad-
vantage of the parallelism offered by modern network interface
cards, multiple CPUs, and multiple GPUs, to improve scalabil-
ity and runtime performance. By mapping each operation to the
appropriate device, we implemented a NIDS with no serialized
components—no component needs to be synchronized and wait for
another component to finish its execution, or contend for a shared



resource. This design allows for significant performance gains.
On a single box, MIDeA performs stateful packet analysis and in-
spection at 5.2 Gbit/s, while the raw processing throughput of the
computationally-intensive pattern matching operations exceeds 70
Gbit/s when offloaded to the GPUs.

In summary, the main contributions of this work are:

• We introduce a novel multi-parallel architecture for high-
performance processing and stateful analysis of network traf-
fic. Our architecture is based on inexpensive, off-the-shelf,
general-purpose hardware, and combines multi-queue NICs,
multi-core CPUs, and multiple GPUs.

• We present our prototype implementation based on Snort [36],
the most widely used open-source NIDS, demonstrating that
the proposed model is practical and can be adopted by exist-
ing systems.

• We present the design and implementation of a number of
system-level optimizations that improve end-to-end perfor-
mance. We demonstrate that our implementation scales well
with the number of processing units.

• We experimentally evaluate our prototype implementation
under various configurations, and show that commodity hard-
ware can be used effectively to drastically improve the per-
formance of traffic processing applications. Our evaluation
on 10 Gbit/s links demonstrates a significant increase in pro-
cessing throughput compared to existing approaches.

The rest of the paper is organized as follows. Section 2 presents
the design objectives and challenges of our proposed architecture.
In Section 3, we describe the architecture of our parallel network
intrusion detection system in detail. Section 4 presents optimiza-
tions implemented to overcome bottlenecks and reduce specific over-
heads. In Section 5, we thoroughly evaluate our architecture using
different benchmarks and workloads. In Section 6, we discuss the
limitations of our system and directions for future work. Finally,
we discuss related work in Section 7 and conclude in Section 8.

2. DESIGN OBJECTIVES
We begin by discussing the design principles and practical chal-

lenges of mapping the different functional components of a signature-
based network intrusion detection system to a multi-parallel system
architecture.
Inter-flow Parallelism. Our aim is to design a NIDS architecture
that scales with the number of available processing units, enabling
it to operate at line-rates without packet loss. The primary role
of a NIDS is to passively capture the network packets through the
network interface (NIC), process them, and report any suspicious
events. Therefore, the main tasks of the NIDS can be summa-
rized as: (i) packet capturing, usually at multi-Gigabit rates, and (ii)
packet processing, including TCP stream reassembly, application-
level protocol parsing, and pattern matching.

In current hardware NIDS platforms [1, 44], packet processing
operates at line-rates, handling a single input port; therefore, the
platform must inspect input traffic at several Gigabit per second.
Existing software-based NIDS, in contrast, typically follow amulti-
core approach and split the traffic at the flow-level to N slices,
where N is the number of processing nodes available to the sys-
tem [39,47]. Flow-based partitioning achieves an almost even pro-
cessing load at all processing nodes, without requiring any intra-
node communication for processing operations that are limited in

scope to a single flow. Traffic is distributed using either an exter-
nal traffic splitter—which is quite a costly solution—or a software-
based load-balancing scheme, where a simple hash function is ap-
plied on each captured packet, based on which it is assigned to the
appropriate node for processing.

Unfortunately, having many different cores receiving traffic from
the same network interface or a shared packet queue, increases
contention to the shared resource, which incurs additional delay in
packet capturing [19, 20]. This observation leads us to our first de-
sign principle: traffic has to be separated at the network flow level

using existing, commodity solutions, without incurring any serial-

ization on the processing path. In Section 3, we show how our
system takes advantage of recent load-balancing technologies such
as Receive-Side Scaling (RSS) [3], which allows different cores to
receive portions of the monitored traffic directly. This inherently
leads us to a multi-core architecture, in which each core runs a sep-
arate instance of the inspection engine, processing only a subset of
the network flows.
Intra-flow Parallelism. Distributing the monitored traffic to dif-
ferent CPU cores offers significant performance benefits. Recent
studies [20,39] have shown a close-to-linear speedup in the number
of cores. However, the CPU is still saturated by the large number of
diverse and computationally heavy operations it needs to perform:
network flow tracking, TCP stream reassembly, protocol parsing,
string searching, regular expression matching, and so on. The prob-
lem then is how to further parallelize content inspection on each
core, enabling a further increase in the overall traffic processing
throughput, without incurring any packet loss.

This leads us to our second design principle: per-flow traffic pro-

cessing should be parallelized beyond simple per-flow load bal-

ancing across different CPU cores. To enable such “intra-flow”
parallelism, network packets from the same flow have to be pro-
cessed in parallel, while also maintaining flow-state dependencies.
In Section 3.2.2, we discuss how our system can take advantage of
multiple graphics processors to inspect high-volume traffic concur-
rently with the CPU cores. Intra-flow parallelism is achieved by
buffering incoming packets and transferring them to the graphics
card in large batches. Although this buffering scheme adds some
latency to the processing path, it pays off in terms of the processing
throughput that can be sustained.

By parallelizing both packet pre-processing and content inspec-
tion across multiple CPUs and GPUs, the proposed multi-parallel
NIDS architecture can operate at line rate in multi-Gigabit net-
works using solely commodity components. Our parallelization
scheme also leads to an architecture that is incrementally extensi-
ble in terms of hardware resources. We demonstrate that the over-
all processing throughput of the system can be increased simply by
adding more processing elements.
Resulting Trade-off. A potential issue of our design is the data
transfer operations that must take place between the memory ad-
dress spaces of each device. Specifically, network packets are trans-
ferred from the NIC to the main memory of the host, and from there
to the device memory of the GPU. However, the extra data trans-
fers between the CPU and the GPU over the PCIe bus can be worth
the computational gain offered by the GPU. To further mitigate this
data transfer overhead, we have implemented a pipelining scheme
that allows CPU and GPU execution to overlap, and consequently
hides the added latencies. Although the raw computational power
of the GPU offers enough performance benefits even when con-
sidering all data transferring overheads, the pipelining scheme that
we introduce offers an additional level of parallelism to the over-
all execution path. In Section 4, we discuss in detail how these
optimizations have been implemented in our system.
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Figure 1: MIDeA architecture.

3. ARCHITECTURE
In this section, we describe the overall design of our multi-parallel

network intrusion detection architecture. The key factors for achiev-
ing good performance are: (i) load balancing between processing
units, and (ii) linear performance scalability with the addition of
more processing units. Additionally, for high-performance packet
capturing we consider the use of only inexpensive commodity NICs.

As shown in Figure 1, the NIDS application is mapped to the dif-
ferent processing units using both task and data parallelism across
the incoming network flows. In particular, the network interface
distributes the captured packets to the CPU-cores, ensuring flow-
pinning and equal workload across the cores. Each CPU-core re-
assembles and normalizes the captured traffic before offloading it
to the GPU for pattern matching. Any matching results are logged
by the corresponding CPU-core using the specified logging mech-
anism, such as a file or database.

This design has a number of benefits: First, it does not require
any synchronization or lock mechanisms since different cores pro-
cess different data in isolation. Second, having several smaller data
structures (such as the TCP reassembly tables) instead of sharing a
few large ones, not only reduces the number of table look-ups re-
quired to find a matching element, but also reduces the size of the
working set in each cache, increasing overall cache efficiency.

3.1 Packet Capturing
Our system uses 10GbE NICs, which are currently the state-of-

the-art general-purpose network interfaces. Capturing packets at
these rates is non-trivial and requires the coordinated effort of the
network controller and the multi-core CPUs.

3.1.1 Multiqueue NICs

To avoid contention when multiple cores access the same 10GbE
port, modern network cards can partition incoming traffic into sev-

eral Rx-queues [28]. This allows each CPU core to access its own
hardware queue independently, while the NIC controller is respon-
sible for classifying incoming network packets and distributing them
to the appropriate queue. The Rx-queues are not shared between
the CPU cores, eliminating the need of synchronization. Each Rx-
queue is dedicated to a specific user-level process that is mapped
to a different core, as shown in Figure 1. Each user-level pro-
cess fetches packets from a single queue and forwards them to the
next processing module. The controller can set up a number of
Rx-queues equal to the number of available CPU cores (the Intel
82599EB Ethernet controller [2] that we used in our implementa-
tion supports up to 128 Rx-queues).

To avoid costly packet copies and context switches between user
and kernel space, we use the PF_RING network socket [11]. The
most efficient way to integrate a PF_RING socket with a multi-
queue NIC is to dedicate a separate ring buffer for each available
Rx-queue [15]. Network packets of each Rx-queue are stored into a
separate ring buffer and are pulled by the user-level process through
DMA, without going through the kernel’s network stack.

We also take into consideration the interrupt handling of each
queue. In Linux, interrupts are handled automatically by the ker-
nel through the irqbalance daemon. This daemon is responsi-
ble for evenly distributing interrupts from each Rx-queue to CPU
cores, in a round-robin fashion. Unfortunately, this is not the opti-
mal solution for multi-core systems, because distributing the han-
dling of interrupts from a single Rx-queue to multiple cores re-
sults in cache invalidation and performance degradation [25]. This
means that irqbalance does not guarantee that the interrupt
of the next packet of the same flow will be handled by the same
core. Therefore, we bind the interrupt handling of each Rx-queue
to a specific CPU core by setting the corresponding /proc/irq
/X/smp_affinity entry (where X is the IRQ number of each
Rx-queue, which can be obtained from /proc/interrupts).



3.1.2 Load Balancing

A major implication when partitioning the incoming traffic to
multiple instances is to guarantee that all packets of a specific flow
will be processed by the same user-level process. It is also im-
portant to distribute the load equally to the different processing
cores. Modern NICs [3] support hash-based (or flow-based), and
address-based classification schemes. In hash-based schemes, such
as Receive-Side Scaling (RSS), a hash function is applied to the
protocol headers of the incoming packets in order to assign them to
one of the Rx-queues. In address-based schemes, such as Virtual
Machine Device Queues (VMDQ), each Rx-queue is assigned a
different Ethernet address, to provide an abstraction of a dedicated
interface to guest virtual machines.

For our purposes, we choose the hash-based method. The hash
function, computed on the typical 5-tuple <ip_src, ip_dst,

port_src, port_dst, protocol> achieves good distribu-
tion among the different queues. The RSS specification [28] allows
the explicit parameterization of the tuple fields that will be used to
compute the hash. Unfortunately, current RSS-enabled network in-
terfaces (such as the Intel 82599EB that we used) use a fixed hash-
ing type, which only ensures that the packets of the uni-directional
streams of a connection will result to the same hash value. This
means that the client-to-server stream of the flow will may end up
to one Rx-queue, and the server-to-client stream to a different one.

In order to insure that packets of both directions end up into the
same ring buffer, a symmetric hashing is further applied on the 5-
tuple fields of each packet header. Eventually, all packets of the
same flow will always be placed in the same ring buffer, and will be
processed by the same user-level process. In addition, we bind the
process that reads from each ring buffer to the same core using the
CPU affinity of the Linux scheduler (see sched_setaffini-
ty(2)), in order to increase cache locality. We assume that the
monitored traffic consists of many different concurrent flows (at
least as many as the available CPU cores), hence all processes are
fed with data. This is not an issue even in small networks, since
even a single host usually has tens of concurrent active connections.

3.2 Processing Engine
Incoming traffic is forwarded to the processing engines for anal-

ysis. Each processing engine is implemented as a single process
and is mapped to a certain CPU core to avoid costs due to process
scheduling. The basic functionality of each processing engine is
to retrieve the network packets from its assigned hardware queue,
decode them and apply higher-level protocol analysis, and finally
transfer them to the GPU for content inspection.

3.2.1 Preprocessing

Preprocessing modules are built on top of the decoding subsys-
tem and preprocessor engines of Snort 2.9. The purpose of the
decoder is to parse the packet headers according to lower-layer pro-
tocols (Ethernet, IP, TCP, and so on). After packets have been de-
coded, they are sent through a preprocessing stage that includes
flow reassembly and protocol analysis.

TCP packets are reassembled into TCP streams to build the entire
application dialog before they are forwarded to the pattern match-
ing engine. Packets that belong to the same direction of a TCP flow,
are merged into a single packet by concatenating their payloads ac-
cording to the TCP protocol. Inspecting the concatenation of sev-
eral network packets, instead of each network packet separately,
enables the handling of overlapping data and other TCP anoma-
lies. This allows the detection engine to match patterns that span
multiple packets. Content normalization is also applied for higher-
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Figure 2: Batching different flows to a single buffer.

level protocols, such as HTTP and DCE/RPC, to remove potential
ambiguities and neutralize evasion tricks.

Once flow reassembly and normalization is complete, the data is
forwarded to the detection engine, which performs signature match-
ing on the incoming traffic. In existing NIDS like Snort [36], the
detection signatures are organized in port groups, based on the
source and destination port numbers of each rule. Additionally,
a separate detection engine instance is used to search for the string
patterns of a particular rule group. To achieve intra-flow paral-
lelization, MIDeA takes advantage of the data-parallel capabilities
of modern graphics processors.

Incoming traffic is transferred to the memory space of the GPU
in batches. As we discuss in Section 5.2, small transfers results
to significant PCIe throughput degradation, hence we batch lots of
data together to reduce the PCIe transaction overhead. Also, in-
stead of allocating a different buffer for each port group, we simply
mark each packet so that it will be processed by the appropriate
detection engine in the searching phase. Consequently, only one
buffer is needed per process, instead of one for each port group,
as shown in Figure 2. This results to significantly lower memory
consumption and reduces response latency for port groups with low
traffic. Whenever the buffer gets full, all packets are transferred to
the GPU in one operation.

The buffer that is used to collect the network packets is allo-
cated as a special type of memory, called page-locked or “pinned
down” memory. Page-locked memory is a physical memory area
that does not map to the virtual address space, and thus cannot be
swapped out to secondary storage. The use of this memory area
results to higher data transfer throughput between the host and the
GPU device, because the GPU driver knows the location of the data
in RAM and does not have to locate it—neither swap it from disk,
nor copy it to a non-pageable buffer—before transferring it to the
GPU. Data transfers between page-locked memory and the GPU
are performed through DMA, without occupying the CPU.

3.2.2 Parallel Multi-Pattern Engine

A major design criterion for matching large data streams against
many different patterns, is the choice of an efficient pattern match-
ing algorithm. The majority of network intrusion detection systems
use a flavor of the Aho-Corasick algorithm [5] for string searching,
which uses a transition function to match input data. The transi-
tion function gives the next state T [state, ch] for a given state

and a character ch. A pattern is matched when starting from the
start state and moving from state to state, the algorithm reaches
a final state. The memory and performance requirements of Aho-
Corasick depend on the way the transition function is represented.
In the full representation, each transition is represented with 256
elements, one for each 8-bit character. Each element contains the
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next state to move to, hence given an input character, the next state
can be found in O(1) steps. This gives a linear complexity over the
input data, independently on the number of patterns, which is very
efficient in terms of performance.

In the full state representation, hereinafter AC-Full, every possi-
ble input byte leads to at most one new state, which ensures high
performance. Unfortunately, a full state representation requires
large amounts of memory, even for small signature sets. When
compiling the whole rule set of Snort, the size of the compiled state
table can reach up to several hundreds Megabytes of memory. On
most modern graphics cards, available memory is not a constraint
any more, since they are usually equipped with ample amounts of
memory—a GeForce GTX480 comes with 1.5GB of memory at a
reasonable price. Unfortunately, in the CUDA runtime system [32],
on which MIDeA is based, each CPU thread is executed in its own
CUDA context. In other words, a different memory space has to
be allocated in the GPU for each process, since they cannot share
memory on the GPU device. As we discuss in Section 5.2, when
using the AC-Full algorithm, only the detection engines of a single
Snort instance can fit in the memory space of the GPU. That means
that only one Snort instance can fully utilize the GPU at a time.

To overcome the memory sharing limitation of CUDA and main-
tain scalability, it is important to keep the memory requirements
low. Instead of creating a full state table, we use a compacted state

table structure for representing the compiled patterns [31]. The
compacted state table is represented in a banded-row format, where
only the elements from the first non-zero value to the last non-zero
value of the table are actually stored. The number of the stored el-
ements is known as the bandwidth of the sparse table. In our new
implementation, AC-Compact, the next state is not directly accessi-
ble while matching input bytes, but it has to be computed, as shown
in Figure 3. This computation adds a small overhead at the search-
ing phase, which is amortized by the significantly lower memory
consumption.

Moreover, it is common that many patterns are case-insensitive,
or share the same final state in the transition table. Instead of insert-
ing every different combination of lowercase and capital letters for
the pattern, we simply insert only one combination (i.e., all charac-
ters are converted to lowercase), and mark that pattern in the pattern
list as case-insensitive. In case the pattern is matched in a packet,
an extra case-insensitive search should be made at the index where
the pattern was found. If two patterns share the same final list (i.e.,
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the match list contains more than one pointers to patterns), the pat-
terns contained in the list have to be verified for finding the actual
match.

Each packet is processed by a different GPU thread. Packets are
stored into an array, which dimensions are equal to the number of
the packets that are processed at once and the Maximum Transmis-
sion Unit (MTU). Packets that exceed MTU (which is 1500 bytes
in Ethernet) are splitted down into several smaller ones, and are
copied in consecutive rows in the array. To detect attacks that span
multiple rows, each thread continues its search to the following
portions of the packet (if any) iteratively, until a final or fail state is
reached.

3.2.3 Multi-GPU Support

A key feature of MIDeA is its support for pattern matching using
several GPUs at a data-parallel level. Modern motherboards, such
as the one we used in our evaluation, support multiple GPUs on the
PCI Express bus. MIDeA utilizes the different GPUs by dividing
the incoming flows equally and performing the signature matching
in parallel across all devices.

By default, MIDeA utilizes as many GPUs as it can find in the
system; however, this can be controlled by defining the number of
GPUs it should try to use in the configuration file. In the CUDA
runtime system, on which MIDeA is based, each CPU process is
bound to one device. To make multi-GPU computation possible,
several host processes must then be created, with at least one pro-
cess per device. A static GPU assignment is used for each process.
Each process receives a uniform amount of flows, due to the load
balancing scheme described in Section 3.1.2, and thus flows are
equally distributed to the different GPUs.

4. PERFORMANCE OPTIMIZATIONS
Having described our architecture, we now go into a couple of

optimizations that improve: (i) memory accesses on the GPU, and
(ii) CPU and GPU execution through pipelining.
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Optimizing GPU Memory Accesses. One important optimiza-
tion for the GPU pattern matching algorithm is related to the way
the input data are loaded from the device memory. Since pattern
matching is performed byte-wise, each input symbol is represented
with 8 bits. However, the minimum size for every device mem-
ory transaction is 32 bytes. Thus, by reading the input stream one
byte at a time, the overall memory throughput may be reduced by
a factor of up to 32.

We have found that memory is better utilized when multiple
bytes are fetched at a time, instead of just one. To that end, we
redesigned the input reading process so that each thread accesses
data using the int4 built-in data type (int4 is a vector type, con-
sisting of 4 integer variables). Data is stored into a 128-bit register,
and is accessed a byte at a time. Int4 is the largest data-type that
can be used to read data from the texture memory of the device,
utilizing up to 50% of the total GPU memory bandwidth.

PipelinedExecution. Our core idea for hiding the pattern match-
ing computation time on the GPU is double buffering. Our archi-
tecture improves the achieved parallelism by pipelining the execu-
tion of CPU cores and the GPUs. For each process, when the first
buffer becomes full, it is copied to a texture bounded array that can
be later read by the GPU through the kernel invocation. While the
GPU is performing pattern matching on the flows of the first buffer,
the CPU processes newly arrived packets, as shown in Figure 4.

Moreover, on recent CUDA-enabled devices, it is possible to
overlap kernel execution on the device with data transfers between
the host and the device, even for different processes. The dedicated
DMA engine of NVIDIA GPUs1 allows the concurrent execution
of a CUDA kernel along with data transfers over the PCIe bus. For
example, while one process transfers the data to the GPU, another
process can execute the pattern matching operations. This allows
better GPU utilization, as depicted in Figure 5. As we discuss in
Section 5.2.1, the performance improvement due to overlapping ex-
ecution in the GPU is up to 330%.

5. EXPERIMENTAL EVALUATION
We evaluated the performance of our system under a variety of

workloads. We first describe the experimental testbed (Section 5.1),
and then analyze the performance of MIDeA under different sce-
narios using micro-benchmarks (Section 5.2), as well as high-level
end-to-end performance measurements (Section 5.3).

1For devices with Compute Capability 1.1 or greater.
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5.1 Experimental Setup
Hardware Setup. The overall architecture of our test system is
shown in Figure 6. Our base system has two processor sockets,
each with one Intel Xeon E5520 Quad-core CPU at 2.27GHz and
8192KB of L3-cache. Each socket has an integrated memory con-
troller, connected to memory via a memory bus; this offers par-
allelism in memory accesses and, therefore, to higher aggregate
and per-CPU bandwidth, as previous studies have shown [13]. The
sockets are connected to each other and to the I/O hub via dedicated
high-speed point-to-point links. The I/O hub is connected to the
GPUs and the NIC via a set of PCIe buses: two PCIe 2.0 ×16 slots,
which we populated with two GeForce GTX480 graphics cards,
and one PCIe 2.0 ×8 slot holding one Intel 82599EB 10GbE NIC.
To cover the needs for PCIe lanes, we acquired a motherboard with
a dual I/O hub and a total of 72 lanes. Each NVIDIA GeForce GTX
480 is equipped with 480 cores, organized in 15 multiprocessors,
and 1.5GB of GDDR5 memory.
Software. Our prototype runs on Linux 2.6.32 with the ioatdma
and dcamodules loaded. The ioatdma driver is required for sup-
porting QuickPath Interconnect architecture of recent Intel proces-
sors. DCA (Direct Cache Access) is a NIC technology that directly
places incoming packets into the cache of the CPU core for imme-
diate access by the application. In all of our experiments we used
the default rule set of Snort 2.8.6, which consists of 8,192 rules,
comprising about 193,000 substrings for string searching. All de-
fault preprocessors, including frag3, stream5, rpc_decode,
ftp_telnet, smtp, dns, and http_inspect, were enabled.
Traffic Generation. We used two servers for traffic generation
to overcome the poor performance of the Linux kernel’s network
stack when sending small packets. The traffic generation servers
andMIDeA are connected through a 10GbE switch. The test traffic,
consisting of both generated synthetic traffic as well as real traffic
traces, is sent using tcpreplay [4].

5.2 Micro-Benchmarks
We begin our evaluation by measuring the computational through-

put of MIDeA using a varying number of CPU processes and GPU
devices. Each process runs on a different CPU core, therefore we
can utilize all cores by creating eight processes.

For the input data stream we used synthetic network traces of
varying length with random payload. The data stream was care-
fully created to exercise most code branches, as well as different
parameters of our implementation. To simulate the multi-queue ca-
pabilities of the NIC, we loaded the network packets of the trace
file into separate queues (one for each core) using a simplified ver-
sion of the Toeplitz hash function, which is used for RSS in mod-
ern NICs [28]. This is the “ideal NIC” case, where no overhead is
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Figure 7: Per-process transfer rate between CPU and GPU.

Buffer Size 1KB 4KB 64KB 256KB 1MB 16MB

Host to Device 2.04 7.1 34.4 42.1 44.6 45.7

Device to Host 2.03 6.7 21.1 23.8 24.6 24.9

Table 1: Data transfer rate between host and device (Gbit/s).

added due to the transferring of the packets from the network inter-
face to the host’s main memory. All network packets are stored in
memory, thus no blocks were transferred from disk when reading
packets. We have verified the absence of I/O latencies using the
iostat(1) tool.

5.2.1 GPU Performance

Data Transfer. Flows are transferred to each GPU device over the
shared PCIe ×16 bus. PCIe uses point-to-point serial links, allow-
ing more than one pair of devices to communicate with each other
at the same time.

Table 1 shows the transfer rate of one process for moving data to
a single GPU device, and vice versa, for different buffer sizes. We
observe that with a large buffer, the rate of data transfer to the de-
vice is over 45 Gbit/s, while the transfer rate from the device to the
host decreases to about 25 Gbit/s. This asymmetry in the data trans-
fer throughput is probably related to the chosen hardware setup
(i.e., the interconnection between the motherboard and the graphics
cards), and has been also observed by other researchers [17]. We
speculate that future motherboards will alleviate this asymmetry.

Figure 7 shows the transfer rate for a varying numbers of pro-
cesses. The transfer costs include the copy of the network packets
to the memory space of the GPU, and the copy of the results from
the GPU to the host’s memory. We can see that as the number
of processes increases, the per-process throughput sustained by the
PCIe bus slightly decreases. That is expected, since many processes
contend for the same device through the same bus link. However,
the aggregate throughput achieved by all processes increases, re-
sulting to better PCIe bus utilization. As shown in Figure 7, for
eight processes, the bidirectional PCIe throughput when using a
single GPU reaches 9.7 Gbit/s per process, which in aggregate cor-
responds to 77.8 Gbit/s for all eight processes.2 Adding one more
GPU device results to a much higher throughput of 14.1 Gbit/s per
process (113.3 Gbit/s in aggregate for all eight processes), since
each GPU device is interconnected through dedicated PCIe lanes.
Computational Throughput. Having examined the data transfer
costs, we now measure the GPU performance of the AC-Compact
and AC-Full algorithms, described in Section 3.2.2.

Figure 8 shows the sustained throughput for pattern matching
on a single GTX480. We fix the packet length to 1500 bytes and

2The capacity of PCIe ×16 v2.0 is 64 Gbit/s for each direction. In
practice though, the theoretical maximum data rate diverges due to
the 8b/10b encoding at the physical layer.
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Figure 8: GPU throughput for AC-Full and AC-Compact.

#Rules #Patterns #States AC-Full AC-Compact

8,192 193,167 1,703,023 890.46 MB 24.18 MB

Table 2: Memory requirements of AC-Full and AC-Compact

for the default Snort rule set.

vary the number of packets that are processed at once from 512 to
32,768. Our AC-Full and AC-Compact implementations achieve a
peak performance of 21.1 Gbit/s and 16.4 Gbit/s, respectively, in-
cluding the data transferring costs to and from the device. The CPU
achieves a performance of 0.6 Gbit/s for the AC-Full implementa-
tion, and thus a single GPU instance corresponds to 36.2 and 28.1
CPU cores for the AC-Full and AC-Compact implementations, re-
spectively.

As expected, AC-Full outperforms AC-Compact in all cases. The
added overhead of the extra computation that AC-Compact per-
forms in every transition decreases its performance about 30%. The
main advantage of AC-Compact is that it has significantly lower
memory consumption than AC-Full. Table 2 shows the correspond-
ing memory requirements for storing the detection engines of a
single Snort instance. AC-Compact utilizes up to 36 times less
memory, which makes it a better fit for a multi-CPU environment,
due to CUDA’s limitation of allocating a separate memory con-
text for each host thread. Using AC-Compact, a single GTX480
card can store the detection engines of about 50 Snort instances
(50 × 24.18MB ≈ 1.2GB). The remaining memory is used for
storing the contents of network packets. If AC-Full is used, only
one instance can fit in device memory. In all subsequent experi-
ments we use the AC-Compact algorithm.
Utilization. We investigate the performance of the AC-Compact
algorithm further, by varying the number of CPU processes that
feed the GPU devices with data.

Figure 9(a) shows the aggregate data processing throughout of
the GPU(s) for an increasing number of CPU processes. Figure 9(b)
plots the same data normalized by the number of processes. It
is clear that multiple processes offer an improvement even when
utilizing only one GPU device. Currently, GPUs support multi-
tasking through the use of “timesliced” context switching: each
program receives a time slice of the GPU resources and cannot be
suspended. When many processes use the same GPU device, data
transfers and GPU execution may overlap, offering better GPU uti-
lization. GPU executions have short run times, ranging from 100–
300ns per packet, and hence, the GPU device can be effectively
timesliced among the CPU processes.

We observe that with two spawned processes, the overhead of the
AC-Compact implementation increases, since the 25 Gbit/s through-
put achieved is greater than the 21.1 Gbit/s achieved by the AC-Full
algorithm, as shown in Figure 8. Increasing to eight processes, a
single GPU reaches a maximum of 48 Gbit/s throughput. The PCIe
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Figure 9: GPU throughput with an increasing number of CPU-processes up to the number of cores.

Packet size (bytes)

100 200 400 800 1500

T
h

ro
u

g
h

p
u

t 
(G

b
it
/s

)

0

2

4

6

8

10

12

CPU−only

1−GPU

2−GPUs

(a) Different packet sizes.

Number of Processes

1 2 4 8
T

h
ro

u
g

h
p

u
t 

(G
b

it
/s

e
c
)

0

2

4

6

8

10

12

CPU−only

1−GPU

2−GPUs

(b) Different numbers of CPU processes.

Figure 10: Overall sustained throughput for different workloads and configurations.

bus saturation, which was shown in Figure 7, is the main reason
for this upper bound. However, since the PCIe bus is a point-to-
point link, adding one more GPU device to the system increases
the aggregate GPU throughput to over 70 Gbit/s.

5.2.2 Overall Performance

Throughput. In our next experiment, we measured the overall
processing throughput achieved by our multi-parallel implemen-
tation. Figure 10(a) shows the sustained throughput for different
packet sizes. We observe that for very small packet sizes, the GPU-
assisted design exhibits a slightly worse performance compared to
the multi-core approach alone. The main reason for this is that the
buffering overheads for very small packets are greater than the cor-
responding pattern matching costs, as shown in more detail in the
following experiment. Therefore, it is better in terms of perfor-
mance to match very small packets on the CPU, rather than trans-
ferring them to the GPU.

As a consequence, we adopted a simple opportunistic offloading
scheme, in which pattern matching of very small packets is per-
formed on the CPU instead of the GPU. Thus, only packets that
exceed a minimum size threshold are copied to the buffer that is
transferred to the GPU for pattern matching. The packets contain
already the TCP reassembled stream of a given direction, hence no
state needs to be shared between the CPU and the GPU. The min-
imum threshold can be inferred off line, using a simple profiling
measurement, or automatically at runtime. For simplicity we cur-
rently use the former method, although we plan to implement an
automated solution in the future.

Figure 10(b) shows the sustained throughput for a different num-
ber of CPU processes, using 1500-byte packets. We observe that as
the number of processes increases, the sustained throughput also in-
creases linearly. When pattern matching is offloaded on the GPU,

the throughput of the legacy multi-core implementation is increased
3.5–4.5 times, depending on the number of processes. The maxi-
mum throughput achieved by our base system reaches about 11.7
Gbit/s when utilizing all resources—eight CPU cores and two GPUs.

Finally, we observe that switching from one to two GPUs does
not offer significant improvements to the overall performance. This
can be explained by the fact that GPU communication and compu-
tation costs are completely hidden by the overlapped CPU compu-
tation, as discussed in the following experiment.
Timing breakdown. We proceed and examine in greater detail the
overall performance achieved by profiling each device separately.
In Figures 11(a)–11(d) we plot the individual execution times for
various packet lengths. We show the times of each device with
different bars, since execution is performed in parallel. CPU and
GPU execution is pipelined, hence the CPU can continue unaf-
fected while GPU execution is in progress. Each bar represents the
execution time of the two GPU devices, while the thin line on each
bar represents the corresponding time when utilizing one GPU. We
observe that even when a single GPU is used, the cost for the data
transfers and the pattern matching on the GPU is completely hidden
by the overlapped CPU workload, for all packet sizes.

The extra cost for packet buffering before transferring them to
the GPU depends highly on the packet size. Small packets incur
higher cost per-byte, due to the start-up overhead of the memcpy(3)
function. 100-byte packets or smaller induce a prohibitively large
overhead, in comparison with the pattern matching cost. We tried
to optimize the copies using a byte-by-byte procedure instead of
calling the memcpy(3), however the overhead was still higher.
Thereupon, we avoid the small-packets penalty by opportunisti-
cally offloading pattern matching computation on the GPU depend-
ing on the packet length.

Finally, we notice that GPU execution times for small packets
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Figure 11: Breakdown of per-byte processing overhead for different packet sizes.

also increase. The main reason for this is that the dimensions of the
buffer that is used for transferring the packets to the GPU are fixed,
hence it is populated sparsely for small packets.

5.3 Overall Traffic Processing Throughput
In this section, we measure the end-to-end performance of our

prototype implementation under realistic conditions.

5.3.1 Synthetic Traffic

Figure 12(a) shows the packet loss ratio for different packet sizes,
when replaying traffic at varying rates. We plot values up to the
maximum achieved replay rate, hence the smaller the packet size,
the lower the replay rate reached. For example, for 200-byte pack-
ets, we managed to replay traffic at maximum rate of 1.86 Gbit/s,
while for 1500-byte packets we achieved a rate of 7.67 Gbit/s.

Given these traffic replay rates, our prototype system begins to
drop packets at 7.22 Gbit/s for 1500-byte packets, which is a 253%
improvement over the traditional multi-core implementation. When
processing smaller packets, the performance falls to 1.5 Gbit/s,
which is slightly higher than the traditional multi-core implemen-
tation, although the drop rate is about 6.6 times lower.

Comparing the achieved throughput with the “ideal NIC” case
in Figure 10(a), we observe that the NIC adds a variable overhead
that depends on the size of the captured packets. It is clear that
small packets add more latency to the capturing process than larger
ones. For the traditional multi-core approach, we observe an extra
overhead of 55% for 200-byte packets, that falls to 18% for 800-
byte packets, and 13% for 1500-byte packets. Similarly, the extra
overhead for the GPU-accelerated implementation is 110% for 200-
byte packets, about 87% for 800-byte packets, and 52% for 1500-
byte packets. We observe that the NIC overhead is larger in the
GPU-accelerated implementation, and we speculate that this is an
issue related to congestion in the PCIe controller.

5.3.2 Real Traffic

In our final experiment, we evaluate MIDeA in a scenario using
real traffic. We used a trace of real network traffic (referred to as
UNI), captured at the gateway of a large university campus with
several thousands of users. Specifically, the trace spans 74 minutes,
and includes all packets and their payloads, totalling 46 GB. Table 3
summarizes the most important properties of the trace.

To replay the captured trace at high-speed, it has to reside in the
main memory of the host to avoid disk accesses. Unfortunately, the
main memory of our two traffic generator machines is only 4GB,
hence it is impossible to load the whole trace in memory. To over-
come this issue, we split the trace to several 2GB parts. While one
part is replayed, the other part is loaded into main memory. Since
reading from disk is much slower, each part is replayed several

Packets 73,162,723

Packet size (min/max/avg) 60/1,514/ 679.57

IP Fragments 88,411

TCP sessions 185,642

UDP sessions 174,442

Triggered Snort Alerts 183,050

Table 3: UNI trace properties.

Model Qty Unit price

NIC: Intel 82599EB 1 $687

CPU: Intel Xeon E5520 2 $336

GPU: NVIDIA GTX480 2 $340

Table 4: Cost of MIDeA components (as of April 2011).

times, up until the next part is fully loaded into memory. Using the
above pre-fetching scheme, we successfully managed to replay the
captured trace with speeds of up to 5.7 Gbit/s.

Figure 12(b) shows the dropped packets when increasing the
traffic rate. We also annotate the throughput achieved when reading
the network packets directly frommain memory instead of the NIC.
The traditional multi-core implementation starts to drop packets at
1.1 Gbit/s, while the ideal throughput is near 1.4 Gbit/s. When
GPU acceleration is enabled, we did not observe any packet loss
for speeds of up to 5.2 Gbit/s. For comparison, the ideal through-
put is 7.8 Gbit/s.

6. DISCUSSION
So far in this paper we went over a detailed description of the

design aspects, trade-offs, and performance issues of our proposed
architecture. Even though we focused on the parallelization of an
intrusion detection system, we strongly believe that the proposed
model can benefit a variety of other network monitoring applica-
tions, such as traffic classification, content-aware firewalls, spam
filtering, and other network traffic analysis systems. With this in
mind, we could easily augment a router with multi-parallel net-
work processing capabilities, expanding its functionality without
affecting its normal packet routing operations [13].

Price/Performance. For our hardware setup, we have selected
relatively low-end devices: two Intel Xeon E5520 processors, two
NVIDIA GeForce GTX 480 graphics cards, and an Intel 82599EB
10GbE NIC. Table 4 shows the approximate cost of each compo-
nent, as of April 2011. The total cost of our base system is about
$2739, achieving a throughput per dollar cost of 1.8 Mbps/$.
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Figure 12: Observed packet loss for (a) synthetic and (b) real

traffic, as a function of the traffic rate. MIDeA can handle real

traffic speeds of up to 5.2 Gbit/s without dropping any packets.

Limitations and Future Work. In favor of programming sim-
plicity, we chose to use processes instead of threads for paralleliz-
ing the CPU part of MIDeA. We believe that a multi-threaded im-
plementation would further increase the complexity of the design
without a significant increase in the overall throughput.

In our flow-based partitioning scheme, we avoid any communi-
cation between the cores. Traditional Snort-style signature match-
ing does not require any communication for analysis outside the
scope of a single flow. In case a network analysis system needs this
functionality, e.g., for detecting DDoS attacks or malware propaga-
tion, a lightweight communication scheme needs to be integrated
for coordinating the different cores [47].

The buffering of network packets, described in section 3.2.1, in-
troduces an extra copy operation. This is mandatory for our design,
considering that most packets have to be processed before match-
ing them against signatures, and that transferring a single packet
each time significantly reduces the PCIe throughput.

Finally, each process allocates a different memory space on the
GPU, due to the restriction of the CUDA driver for preventing shar-
ing of GPU memory between different processes. Although the
same policy applies to threads, we believe that future releases of
the CUDA driver will support device memory sharing. In that case,
we could easily migrate to the faster AC-Full algorithm. We also

believe that a shared GPU memory space would exhibit higher lo-
cality and increase the computational throughput.

7. RELATED WORK
Prior work has focused extensively on the use of specialized

hardware to augment NIDSs capabilities. The majority of these ap-
proaches focus on improving deep packet inspection (DPI), which
is the most computationally-intensive NIDS operation, using spe-
cialized hardware, such as FPGAs, ASICs, and TCAMs [9, 12, 27,
30,45,52]. Recently, Meiners et al. [27] proposed a custom regular
expression matching approach based on TCAMs, which achieves a
throughput of up to 18.6 Gbit/s; our corresponding pattern match-
ing implementation alone reaches a 70 Gbit/s throughput, which is
almost a four-times improvement, using commodity off-the-shelf
equipment. Other approaches employ a pre-filtering mechanism
based on FPGAs to reduce the amount of traffic sent to a software
NIDS/NIPS for inspection [16,43]. Unfortunately, most implemen-
tations are tied to a specific architecture, and thus, are particularly
difficult to extend and program. Any changes in the rule set require
recompilation, regeneration of the automaton, resynthesis, replace-
ment, and routing of the circuits, which is a time-consuming and
difficult procedure.

Much work has also focused on improving the performance of
detection mechanisms, such as string matching and regular expres-
sion matching [7, 22, 23, 40, 46, 51]. These works are orthogonal
to ours, and can be integrated to our system to improve memory
utilization and performance.

In another line of work, cluster-based approaches have been pro-
posed for keeping-up with the increasing link speeds. Instead of
having a single server to process all incoming traffic, a cluster of
servers is used instead. The major issue then is how to partition the
incoming traffic to the back-end servers, while supporting stateful
processing. Kruegel et al. [21] propose a stateful slicing mecha-
nism that divides the overall network traffic into subsets of manage-
able size, which are then processed by different sensors. Foschini et
al. [14] extend that work with a parallel matching algorithm that al-
lows communication between the sensors through a dedicated con-
trol plane. SPANIDS [38] uses a specialized FPGA-based switch,
that takes into account flow information and the load of each server
when redirecting network packets. Xinidis et al. [50] present an
active splitter architecture that provides early filtering to reduce the
load of the back-end sensors.

Other approaches attempt to improve the performance of NIDS
using commodity hardware. Paxson et al. [35] and Valentin et
al. [47] implemented a NIDS cluster that scales through the use
of parallel nodes. Their system, based on Bro [33], demonstrates
the ability to scale beyond the capacity of a single NIDS instance
using commodity hardware, with the exception of the special pur-
pose front-end hardware that was used to distribute traffic evenly
across the back-end nodes. In Supra-linear Packet Processing [19],
a single thread is responsible for packet gathering and dispatching,
while many other threads are processing incoming flows in parallel.
Thus, each processing thread handles a specific flow in isolation.
Unfortunately, a lot of time is spent on context switches between
threads, most likely due to high levels of locking contention to the
shared packet queue.

To eliminate the excessive contention rates due to packet queue
access in the packet processing architectures, flow-pinning is com-
monly used (i.e., all packets of a flow are “pinned” to be processed
by a specific thread) [20]. This approach requires slightly more data
storage to keep the incoming packets to separate queues. How-
ever, it allows most of the threads to work independently, which
is a key characteristic of a good multi-threaded algorithm. Schuff



et al. [39] evaluate different per-flow and intra-flow parallelization
approaches. Although their results do not propose a clear winner,
it seems that pure flow-concurrent parallelism performs better in
almost all cases.

Recently, graphics processors have been used to boost computa-
tionally intensive tasks in intrusion detection systems. Gnort [48,
49] was the first attempt that sufficiently utilized the graphics pro-
cessor for string searching and regular expression matching. Un-
fortunately, its single-threaded architecture restricts its scalability
in the advent of multi-core CPUs. Many other approaches followed
the above scheme [18,41], without significant differences in the ar-
chitecture and the performance benefits.

8. CONCLUSION
In this work, we designed and built a multi-parallel intrusion de-

tection architecture, as a scalable solution for the processing and
stateful analysis of network traffic. Our system achieves high per-
formance, with a processing throughput that exceeds 5 Gbit/s for
real traffic, and raw pattern matching speeds of 70 Gbit/s, using
commodity off-the-shelf hardware, in a single box.

MIDeA has three levels of parallelization, at the NIC, the CPU,
and the GPU levels. It consists of a multi-queue NIC, which dis-
tributes the incoming traffic across a set of multi-core CPUs for
packet processing and analysis. Each CPU core is processing the
traffic of only a subset of network flows. Having split the traffic
to different cores, MIDeA further offloads the costly content in-
spection operations to a set of GPUs. By parallelizing both packet
processing and content inspection across multiple CPU cores and
graphics processors, MIDeA offers a scalable approach for build-
ing a multi-parallel NIDS, which can operate at speeds of several
Gbit/s, while at the same time it has en extremely low price point.
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