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ABSTRACT
The ability to remote-control infected PCs is a fundamental com-
ponent of modern malware campaigns. At the same time, the com-
mand and control (C&C) infrastructure that provides this capability
is an attractive target for mitigation. In recent years, more or less
successful takedown operations have been conducted against bot-
nets employing both client-server and peer-to-peer C&C architec-
tures. To improve their robustness against such disruptions of their
illegal business, botnet operators routinely deploy redundant C&C
infrastructure and implement failover C&C strategies.

In this paper, we propose techniques based on multi-path ex-
ploration [1] to discover how malware behaves when faced with
the simulated take-down of some of the network endpoints it com-
municates with. We implement these techniques in a tool called
SQUEEZE, and show that it allows us to detect backup C&C servers,
increasing the coverage of an automatically generated C&C black-
list by 19.7%, and can trigger domain generation algorithms that
malware implements for disaster-recovery.

1 Introduction
Malicious code, also known as malware, is an essential compo-
nent of criminal activity on the internet. Miscreants use a variety
of strategies to infect computers with malware and organize them
into networks of remote-controlled bots. These botnets can then
be used for a variety of harmful activities. These include identity
theft (such as stealing a user’s credit card number or online bank-
ing credentials), sending out unwanted email (SPAM), performing
distributed denial of service attacks (DDoS), tricking the user into
purchasing fake anti-virus products, or generating advertisement
revenue by producing fake “clicks” on advertisement links. In fact,
internet criminals are always looking for new ways to profit from
the computers they control at the expense of their legitimate users
or of the internet at large.

To be successful and maximize their profits, botnet operators
need to be able to dynamically control and update their malware
installations. This allows them to adapt a botnet’s behavior to the
dynamic, adversarial environment in which they operate. For in-
stance, a successful SPAM operation has to frequently modify the
structure and content of the messages being sent, not only because
the goals of the campaign may change rapidly over time (from
advertising online pharmacy web-sites, to distributing attachments
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that contain an exploit) but also because they need to remain one
step ahead of anti-SPAM efforts.

The Command and Control (C&C) infrastructure that botmas-
ters use to control and update their bots is thus a critical component
of their operations. At the same time, C&C is an attractive tar-
get for those who wish to mitigate the damage caused by malware.
Disabling a botnet’s C&C infrastructure can effectively take down
the botnet. If botmasters lose control of their bots, they are pre-
vented from using them to cause further mischief, even though the
malware infections of the individual bots may not themselves have
been remediated.

In recent years, botnet operators have therefore deployed a vari-
ety of client-server or peer-to-peer (P2P) C&C architectures, de-
signed to be robust against take-down attempts. Recent client-
server botnets include Pushdo/Cutwail [2], Torpig [3], Rustock [4]
and Zeus (strictly speaking, Zeus is a toolkit for building botnets [5]).
Examples of P2P botnets include Storm [6, 7], Nugache [8] and
Waledac [9]. A few botnets, such as later versions of Conficker,
combine both C&C approaches [10]. Modern client-server bot-
nets do not naively rely on a single C&C server. Instead, they try
to achieve robustness using domain flux [3], frequent updates of
the C&C endpoints, and a high level of redundancy. For instance,
the Koobface botnet uses about one hundred C&C servers running
on compromised hosts [11]. In many cases, the botnets are also
partitioned such that a single bot installation does not contain the
coordinates of the entire C&C infrastructure.

Nonetheless, both client-server and P2P botnets have been the
target of more or less successful node enumeration [12], infiltra-
tion [7, 3, 13, 11, 14] or take-down [15, 16, 17, 18] operations.
Most recently Rustock, one of the largest SPAM botnets, was suc-
cessfully taken down as a result of legal action led by Microsoft [19].
From a technical point of view, this involved identifying all of the
C&C servers employed by the botnet, and taking them down simul-
taneously. Furthermore, the botmasters had to be prevented from
registering specific domains in China that they could have used to
recover control of their bots. In some cases it may not be feasible
to take down identified C&C servers in a timely manner. However,
even in such cases a blacklist of C&C servers, such as the ones
provided by FIRE [20] or Zeus Tracker1, can be extremely useful.
By deploying such a blacklist, network administrators are able to
detect infected machines in their network and to prevent them from
receiving further commands from the botmasters.

A common way of building a C&C blacklist is to run malware
samples in an analysis sandbox such as Anubis [21] or CWSand-
box [22] and detect the C&C traffic they generate [20, 23, 24, 25,
26]. This approach, however, suffers from the familiar limitations
of dynamic analysis: incomplete coverage. That is, a single execu-
tion of a malware sample is unlikely to reveal several, let alone all,
of the redundant C&C servers that the bot is able to contact. Fur-
thermore, so long as the botnet’s main C&C servers are available,

1https://zeustracker.abuse.ch/



the bot will not reveal any fallback strategies it may be provided
with to recover from C&C takedown. For instance, after all of its
C&C servers were taken down in 2008, the Srzbi botnet was able
to get back online because it implemented a domain generation al-
gorithm (DGA) as a recovery mechanism [16].

The goal of this work is to improve the amount of C&C behavior
that can be observed during malware execution. Specifically, our
aim is to increase the number of C&C servers that are contacted
during an analysis run and can therefore be detected, and to trick
malware into revealing backup C&C strategies such as DGA algo-
rithms. For this, we use a specialized, targeted form of multi-path
exploration [1]. The basic idea is that, if a bot is blocked from con-
tacting a specific C&C server, it may try to contact alternative C&C
endpoints.

When a bot attempts to contact an endpoint, an analysis sys-
tem can either allow the communication to proceed, or block it.
By making such a decision for each endpoint, we are essentially
exploring a binary tree of execution paths. This tree grows in size
exponentially with the number of endpoints that a sample may con-
tact. During its execution, a malware sample frequently contacts a
significant number of endpoints, most of which are not related to
C&C, and are, therefore, uninteresting for our purposes. There-
fore, it is not feasible in practice to explore the entire execution
tree. Furthermore, before C&C behavior can be observed, we may
need to allow the bot to contact specific endpoints, that it uses to
test the state of its internet connection or to download additional
code. Therefore, intelligent strategies are needed to explore the
execution tree and discover the largest amount of C&C endpoints
within a reasonable time frame. In Section 3, we introduce two
such strategies. Furthermore, fast exploration of the execution tree
requires the ability to revert the state of the analysis environment to
the moment before a connection was blocked or allowed, to imme-
diately explore the alternative branch.

In this work, we introduce a system called SQUEEZE, that is able
to increase the amount of C&C endpoints and strategies that are
revealed during dynamic analysis. We evaluate our tool on over
8000 malware samples. Results show that, even with a relatively
short run-time, SQUEEZE can reveal hundreds of domains and IPs
of C&C servers that were never observed in a normal run of our
Anubis sandbox. As a result, we are able to increase the number
of entries in an automatically-generated C&C blacklist by 19.7%.
Furthermore, we show that our tool can reveal malware’s ability to
use failover strategies such as DGA algorithms.

In summary, our contributions are the following:

• We introduce two effective strategies for exploring the tree of
executions generated by a malware sample when faced with the
availability or absence of contacted network endpoints.

• We design and implement a system that is able to efficiently ex-
ecute multiple paths within this tree. For this, we employ tech-
niques for reverting the execution state of the analysis sandbox
and dynamically re-configuring its network environment.

• We evaluate the proposed techniques on a diverse and represen-
tative collection of real-world malware samples, and show that
they lead to the detection of hundreds of additional C&C end-
points. This allows us to increase the size of an automatically-
generated C&C blacklist by 19.7%. Furthermore, we show that
SQUEEZE can reveal alternative C&C strategies that are used by
malware to recover from the takedown of its primary C&C infras-
tructure.

2 Approach
To discover backup C&C servers and fallback strategies, we use
a dynamic approach. That is, we run malware samples in a con-

trolled environment and observe their C&C communication. Our
approach is targeted against client-server C&C architectures. The
basic idea is to simulate the takedown of a malware’s primary C&C
servers to trick it into revealing the servers and algorithms it is pro-
vided with for failover. For this, the obvious approach would be to
simply block all traffic originating from the sandbox environment.
There are, however, several reasons why this does not work in prac-
tice. First of all, a bot binary may be delivered by a dropper, as is
the case in pay-per-install affiliate programs. In such cases, a naive
approach would not allow the interesting bot binary to be down-
loaded in the first place. Furthermore, malware authors frequently
contact a popular server to check their internet connectivity. If it is
not available, the sample quits or idles until the network becomes
available. Simply dropping all traffic would cause exactly this un-
desired behavior. Finally, unless we allow traffic to potential C&C
endpoints, we are unable to verify if the traffic is indeed related to
C&C activity.

These considerations provide us with a starting point for the de-
sign of a system for triggering malware’s failover C&C. First of
all, we need to treat C&C traffic differently than other network
traffic. Traffic that is not related to C&C communication should
be allowed through, to the extent that this is possible without al-
lowing the malware to cause harm. On the other hand, C&C traffic
should be blocked to trigger backup behavior. For this, we require
some knowledge about C&C communication, such as signatures
for C&C traffic, that can be used to detect new C&C endpoints.
Finally, to trick the malware into communicating with several of
its redundant C&C servers, we need to be able to block C&C traf-
fic after having allowed through enough of it for our models of
C&C communication to detect it. For this, we need to “rewind”
the malware execution to the moment before the C&C connection
was successfully established. This can be achieved by reverting to
a previously taken snapshot in a virtual machine.

Our approach is essentially a specialized form of multi-path ex-
ploration [1]. For this, it relies on a knowledge base on malware
C&C communication, and on snapshotting functionality that al-
lows it to explore multiple execution paths within a single analy-
sis run. Whenever an analyzed sample attempts to contact a new
endpoint, we take a snapshot before deciding whether to allow this
traffic. Later in the analysis, we are able to revert to this snapshot
to explore the alternative branch. The C&C knowledgebase pro-
vides some domain knowledge to help us decide which execution
branches to explore. This knowledge could come in the form of
network-based signatures for C&C traffic [24, 25] or of network-
based [23] or host-based [26] behavioral models.

3 Exploration Strategies
To describe possible strategies for exploring a malware sample’s
network behavior on different execution paths, we will use a run-
ning example. Figure 1 shows the different components of a mal-
ware, the endpoints it connects to and the effect that connectivity
to these endpoints has on its network behavior. In this example a
dropper is used to distribute the malware. As a first step, the drop-
per will connect to a remote server (File-Server A) and down-
load the actual bot component. If the server is not accessible, the
dropper employs a simple failover strategy and will try to contact
backup server File-Server B. If either download is successful,
the downloaded payload is executed, launching the actual bot. In
this case, the dropper does not actually save the payload to disk be-
fore running it. Instead, it injects the downloaded code into another
process and starts a remote thread [2]. Before executing any mali-
cious behavior, the bot performs a connectivity check by attempting
to access a popular web site, in this case the Yahoo home page. If
the connectivity check fails, no further action is taken. Otherwise,



the bot registers itself at the primary C&C server and receives fur-
ther instructions. These commands will cause the bot to launch a
spam engine or a port scan, connecting to even more endpoints.
The endpoints that are of primary interest to us, however, are those
associated with C&C communication. If the primary C&C server
is unreachable, our example tries to connect to a different hard-
coded endpoint. Only if this backup is also unavailable, the bot
falls back to a Domain Generation Algorithm. The DGA generates
large numbers of domains based on the current date (obtained by
parsing the Yahoo home page, rather than from the system clock).
In case the two main C&C servers were taken offline, the botmas-
ters would register a few of these domains each day, and use them
to provide their bots with an updated list of C&C servers.

Figure 1: Running example: network endpoints contacted by a malware
sample. A line between two endpoints indicates that the malware attempts
to contact the endpoints one after the other. Lines with an arrow represent
behavior following a successful connection, while crossed lines originate
from unreachable endpoints. A crossed circle indicates no further network
activity.

Every time SQUEEZE encounters an endpoint a decision has to
be taken on whether to block this endpoint or allow the commu-
nication to succeed, influencing the behavior of the malware and
the further endpoints it will or will not contact as a result. By rep-
resenting the endpoints as nodes, the decision whether or not to
block a connection as node expansion and the result as edges, the
process of analyzing a malware’s network behavior can be mod-
eled as the exploration of a binary tree. The observant reader will
notice that Figure 1 is in fact a directed acyclic graph, rather than
a tree, since the node www.yahoo.com can be reached from two
different paths. However, malware may exhibit different behavior
depending on the sequence of endpoints it was able to contact. For
instance, the two file servers in Figure 1 may in fact deliver differ-
ent payloads. Strictly speaking, each node in the execution tree is
therefore identified by the sequence of endpoints that the malware
has attempted to contact so far, rather than by the latest endpoint
only. Note that an endpoint may be identified by its domain name
or by its IP address. We use the IP address only in cases where
the IP was not previously obtained by the analyzed sample through
DNS resolution.

Since we can analyze each malware sample for a limited amount
of time, it is unlikely that we can explore all possible branches of
the execution tree during an analysis run. In fact, some malicious
behavior (most obviously, scanning) involves attempting to contact
a practically unlimited number of endpoints. Therefore we need to
develop a strategy for exploring the execution tree that will reveal
the largest amount of C&C activities, given the time constraints.
Standard approaches for traversing a tree include depth-first and
breadth-first search algorithms. As we will see, neither approach is
directly suitable to the problem at hand. Instead, we will need to
develop exploration strategies that make use of domain knowledge
on C&C communication.

In a breadth-first search, each node is completely expanded be-
fore proceeding to the next node. This would allow us to explore

many branches of a sample’s initial network behavior, but would
not lead us very deep within the execution tree. Since C&C end-
points, tried one after the other by the malware, typically form a
deep branch in the tree, depth is more important to us than breadth.
A depth-first search would therefore seem better suited to our needs,
but in fact it also has its pitfalls. With a depth-first search, explo-
ration can easily get “stuck” in a branch where a lot of uninteresting
network activity is occurring (such as port scanning or click fraud).

A solution to this problem is to enrich the search strategy with
additional knowledge on C&C communication. Such knowledge
can contribute to the decision whether a branch is of interest and its
nodes should be expanded or not. Ideally, we would exactly know
which nodes of the tree correspond to C&C endpoints. In practice,
however, we may not be able to automatically identify all C&C
communication. Nonetheless, since our goal is to automatically
build a blacklist of C&C endpoints, it is necessary to have some
means of identifying C&C traffic. For SQUEEZE, we use domain
knowledge in the form of a set of network-based C&C signatures
that were provided to us by a security company. These signatures
have been vetted by human experts, so we have high confidence that
they can identify C&C communication without generating false
positives (though they may not cover all forms of C&C communi-
cation, leading to false negatives). Furthermore, by matching these
signatures against the traffic observed during malware execution in
our Anubis sandbox in the past, we can identify a set of known
C&C endpoints. The C&C signatures and the set of known C&C
endpoints constitute our initial knowledgebase on malware Com-
mand and Control.

There is a significant difference between these two types of in-
formation: A known C&C endpoint can be blocked before a con-
nection is actually established, while a C&C signature can only
be matched after traffic has already been transmitted. Hence, the
former can be used with a block-first strategy while the latter re-
quires an allow-first strategy. Another aspect to take into account
is that each component of the malware – bot, spam engine, etc. –
is typically executed in a separate process. Using our C&C knowl-
edgebase, we are able to identify the process or processes that are
carrying out C&C communication. We will call these processes the
bot component. With this information, we can focus our efforts on
exploring the parts of the execution tree that represent endpoints
contacted by the bot component.

For SQUEEZE, we developed two alternative strategies for ex-
ploring the execution tree. Both can be seen as depth-first search
algorithms, but they differ in the type of C&C knowledge that they
leverage. Figure 2 provides an example for both approaches.

(a) Strategy A (b) Strategy B
Figure 2: The two exploration strategies. A node represents an endpoint. A
solid line represents an allowed connection, a crossed line a blocked con-
nection and dotted lines backtracking before another endpoint is discovered.

Strategy A takes advantage of the set of known C&C endpoints.
When using this strategy, SQUEEZE initially allows all connec-
tions. Once the analyzed malware attempts to contact a known



C&C endpoint, SQUEEZE blocks the connection, and switches to
a block-first, depth-first search. After each decision to block or
allow an endpoint, a timeout is restarted. If no further endpoints
are contacted within the timeout, the search backtracks. Further-
more, whenever the tool detects a connection to a known C&C
endpoint, it identifies the responsible process, and adds it to the bot
component. The exploration strategy only takes into account end-
points contacted by the bot component, and always allows traffic to
other endpoints. The idea behind this strategy is to allow the mal-
ware to perform connectivity checks or other network behavior that
needs to be successfully completed before C&C communication is
triggered. Once the malware attempts a first C&C connection, it
is blocked, leading the bot to attempt to contact its backup C&C
servers, one after the other. Note that this strategy will fail if no
known C&C endpoints are observed.

Figure 2(a) shows an example of Strategy A in action: After
allowing the connection to E1, the system recognizes the known
C&C endpoint E2. Blocking E2 causes the malware to perform
an intermediate connection check on endpoint E3. The connection
is initially blocked, and the sample performs no further network
behavior. After a timeout, we track back and unblock E3. Follow-
ing the now successful connection check, the malware contacts its
backup C&C server at endpoint E4.

Strategy B takes advantage of the set of C&C signatures. When us-
ing this strategy, SQUEEZE performs a depth-first, allow-first search.
However, the C&C signatures are matched against all observed net-
work traffic. As soon as a signature matches the traffic going to a
specific endpoint, SQUEEZE backtracks, blocking communication
with this C&C endpoint. This strategy is aimed at efficiently dis-
covering endpoints that can be detected with the available C&C
signatures.

Figure 2(b) shows an example of Strategy B: When a signature
match is detected in traffic to E1, the system tracks back and blocks
this endpoint. Since the following connection check on endpoint
E2 is successful, the malware immediately proceeds to the backup
C&C server E3. Traffic from E3 also matches a C&C signature.
Blocking this endpoint reveals E4.

The two strategies have different advantages and disadvantages.
By using a block-first approach, strategy A tends to reveal more
endpoints overall. However, unless the exploration backtracks far
enough to allow the malware to connect to an initially blocked end-
point, we do not observe traffic to it and are therefore unable to
confirm if it is in fact a C&C server. Strategy B has the advantage
that it will trigger on a C&C connection even if the contacted C&C
endpoint is not known. Finally, an advantage of strategy A is that it
is more flexible, and can leverage knowledge of C&C endpoints re-
gardless of how they were detected. Strategy B, on the other hand,
relies on the ability to detect C&C communication on the fly. It
cannot be as easily combined with C&C detection approaches that
rely on observing the behavior of a bot after it receives a command,
such as those from Wurzinger et al. [23].

4 System Description
Figure 3 shows an overview of SQUEEZE’s architecture. SQUEEZE
takes as input a malware sample and a knowledgebase on C&C
communication. Depending on the exploration strategy used, this
knowledgebase can contain C&C network signatures or C&C server
endpoints. While the sample is executing in the sandbox, its net-
work activity is constantly monitored and compared with the C&C
information. Whenever a new endpoint is encountered, we take a
snapshot of the current state of the system. The exploration strategy
then determines when to backtrack in the execution tree by revert-
ing to a previous snapshot. Furthermore, the sandbox’s network
environment is dynamically modified by re-configuring a DNS re-

cursor and a firewall. Finally, a delay analysis module within the
sandbox tries to avoid delays between the malware’s network con-
nections by manipulating time (as observed from within the sand-
box), to “fast-forward” malware execution.

Figure 3: SQUEEZE Architecture

4.1 Sandbox
To build our analysis sandbox we leveraged our Anubis dynamic
malware analysis system [21, 27]. Anubis is a dynamic malware
analysis service that has been operating since early 2007, and has
since analyzed over ten million malware samples. At its core is an
instrumented full system emulator for the Windows XP operating
system [21] and is built upon Qemu [28].
Snapshotting. To be able to backtrack in our exploration of the
execution tree, we need to be able to revert the state not only of
the malware being analyzed, but also of the operating system and
analysis environment that it runs in. While it would in principle be
possible to simply restart a sample’s analysis with a different net-
work configuration every time we need to backtrack, this would be
extremely inefficient. Furthermore, in the new execution the mal-
ware might exhibit completely different behavior, confusing our
exploration algorithms.

Since Anubis is a full system emulator, it is possible to take a
snapshot of the state of the entire system (disk, memory and pro-
cessor state), and to restore such a snapshot to revert the execution
to the previous state. In fact, Qemu provides such a snapshotting
mechanism. However, the Anubis instrumentation also keeps some
execution state. For instance, it tracks which processes are under
analysis and what resources operating system handles correspond
to. To use Qemu snapshotting in Anubis, we therefore extend it to
also save and restore the state of the Anubis instrumentation.

To reduce the time spent saving and restoring snapshots, we keep
all generated snapshots in main memory, rather than save them to
disk. Since we only have a limited amount of memory available,
this imposes an upper bound on the number of snapshots that can be
stored simultaneously. Since we use depth-first exploration strate-
gies, this essentially corresponds to a limit to the depth of the exe-
cution tree that we can explore. With a suitable amount of memory
this limit is seldom reached during SQUEEZE analysis.
Delay skipping. A general problem of dynamic analysis is that,
for practical reasons, we are only able to execute each binary for a
limited amount of time. For instance, in its default configuration,
Anubis executes each sample for four minutes. As a consequence,
malware could evade dynamic analysis by simply waiting a certain
amount of time before performing any interesting behavior. For



SQUEEZE, this problem is exacerbated by the fact that malware
frequently waits for some time before trying to contact a backup
C&C server or resorting to a failover C&C strategy.

While this problem is hard to solve in general, in practice most
malware samples can be tricked into skipping such delays. For this,
we modify the behavior of system calls that can be used to delay
a process’ execution. As a first countermeasure, we intercept the
undocumented NtDelayExecution native Windows API func-
tion, which returns after a specified time interval, and limit the de-
lay to a maximum of half a second. Furthermore, we tamper with
instructions and system calls, such as GetTickCount, that can
serve as local sources of timing information, and could be used to
busy-wait until a certain time has elapsed. Specifically, we send
time forward by an interval that grows exponentially with the num-
ber of invocations of GetTickCount, up to a maximum value
(currently set to five hours).
Traffic Interception. To be able to trigger the generation of snap-
shots and the dynamic re-configuration of the network environment
required by our exploration strategy, SQUEEZE needs to match the
network traffic generated by the malware against C&C endpoints
and signatures on the fly. For this, we hook into the appropriate op-
erating system interfaces and inspect their parameters before the ac-
tual functions are executed. Note that in Anubis, hooking happens
from “outside the box” by instrumenting the emulator, rather than
by modifying the operating system “inside the box”. Specifically,
we hook the NtDeviceIoControlFile function which is used
to send data to device drivers. The driver used to transmit data over
sockets is afd.sys, which is the Ancillary Function Driver for
WinSock. Of the various I/O control codes used to handle connec-
tions, two are important for us: AFD_CONNECT which is used to
establish a connection to a port at an IP address and AFD_SEND
which sends input data out over an established link. To keep track
of and be able to react to DNS queries, we additionally intercept the
Windows DNS client’s DnsQuery function that is implemented in
dnsapi.dll.

4.2 Network Environment
SQUEEZE needs to dynamically adapt the network environment to
block or allow connections to specific endpoints in accordance with
the selected exploration strategy. For endpoints identified by a host-
name, we want to block the hostname at the DNS level rather than
the IP addresses associated with it. To this end we redirect all DNS
queries to a local recursor. We use the popular PowerDNS recur-
sor2, because it allows fine-grained dynamic configuration using
LUA scripts. This enables us to create an NXDOMAIN reply for
DNS queries for hostnames we wish to block. To block IP ad-
dresses that are directly contacted by the malware (without a DNS
lookup), we leverage the netfilter firewall3 and configure it to re-
ject the connection attempt and reply to a TCP SYN packet with
a TCP reset, and to a UDP packet with an ICMP destination un-
reachable packet. This is more efficient than simply dropping the
packet, because it avoids unnecessary delays caused by waiting for
connection time-outs on the client side.

In addition to the dynamic network blocking required for SQUEEZE,
we also need to prevent the analyzed samples from causing harm to
the internet at large. For this, we deploy the same countermeasures
employed by Anubis. These include preventing SPAM by redirect-
ing SMTP connections to a local mail server (that does not actually
send the mail), limiting a malware sample’s contribution to denial
of service attacks by throttling network throughput and number of
connections, and blocking frequent attack vectors by redirecting
traffic on a number of ports (such as TCP ports 139 and 445) to a
2http://www.powerdns.com
3http://www.netfilter.org

local honeypot. These measures cannot completely guarantee that
the malware will not cause any harm (0-day attacks in particular are
hard to block). However, experience from the Anubis deployment
shows that they are in practice sufficient for the safe operation of
a malware analysis sandbox. Over four years running Anubis, we
have received only a single abuse complaint, which was promptly
addressed.

5 Evaluation
To evaluate SQUEEZE, we tested it on several thousand malware
samples that had generated C&C traffic in Anubis. As we will
show, analyzing these samples with SQUEEZE revealed a signifi-
cant number of C&C servers that were not observed in Anubis.

To detect C&C traffic, we use a set of 192 network signatures
provided to us by a security company. These signatures are similar
in expressiveness to Snort rules [29], and include regular expres-
sions that are to be matched against network flows. These signa-
tures have been manually vetted for accuracy, and do not in our
experience lead to false positives when matched against Anubis
traffic. However, they may not cover the full spectrum of current
malware C&C communication.

5.1 Dataset
By matching the C&C signatures against traffic dumps generated
by Anubis analysis runs, we identify a set of samples that generated
C&C traffic, together with the C&C endpoints they connected to.
For our evaluation, we then selected a subset of these samples based
on two criteria: First of all, we required recent samples, since older
samples are often no longer functional because they do not contain
up-to-date information for contacting C&C infrastructure. Second,
we would like to test our tool on a dataset involving the largest
possible set of C&C endpoints. Thus, we tried to contact each C&C
endpoint and discarded those that were no longer reachable. This
includes domains that failed to resolve to an IP address and servers
that were no longer reachable on the port used for C&C. For each
of the remaining endpoints, we selected the most recent samples
that communicated with it.

In total, we selected 8,346 malware samples. To assess the di-
versity of this dataset, we scanned the samples with the Kaspersky
anti-virus engine. Kaspersky provided a total of 2,225 different
AV labels for these samples. Kaspersky virus labels have a loosely
structured format, such as “Trojan-Spy.Win32.Zbot.aebi”.
By discarding the last part of these labels (indicating a specific vari-
ant), we can obtain a more coarse-grained classification of malware
binaries into families. Our dataset contained 213 malware families
according to this classification, with the most represented ten fam-
ilies accounting for only 21% of the dataset. Comparing these la-
bels with a recent list of the most prevalent malware families [30]
shows that fourteen of the twenty top malware families are repre-
sented in our dataset.4 This confirms that we are testing our tool on
a diverse and representative malware dataset. Notable exceptions
(top 20 malware families not seen in our dataset) are Conficker and
Storm 2.0, which are P2P botnets and are therefore not covered by
our signatures for client-server C&C activity.

Setup. To run SQUEEZE we used four virtual machine instances on
a host with 32GB memory and an Intel XEON E5420 CPU. 4GB
of memory was assigned to each machine of which 3GB were ded-
icated to storing snapshots. Since snapshots are on average 130MB
in size, this allows for approximately 21 snapshots to be taken. We
run each malware sample for up to 6 minutes. Our setup can there-
fore analyze about one thousand samples a day. We ran our eval-
4A fifteenth family, the Bredolab botnet, is absent from our dataset
because it was successfully taken down shortly after the report was
published [31].



uation for 10 days in March 2011. Since our setup did not allow
us to deploy the two strategies in parallel, the system was config-
ured to use exploration strategy A during the first five days, and
strategy B during the last five days. Our evaluation dataset is there-
fore split into Dataset A, consisting of 4,013 samples analyzed with
SQUEEZE using strategy A, and Dataset B, consisting of 4,333 sam-
ples analyzed using strategy B. We used a new dataset for strategy
B, rather than repeat analysis on Dataset A, to ensure we were test-
ing SQUEEZE against a “fresh” selection of malware samples.

5.2 Malware Behavior

Strategy A Strategy B
Samples analyzed 4013 4333
Initial C&C knowledge
match

54% 58%

No further activity 44% 43%
Substantial delay skipping 34% 31%
New endpoints 25% 23%
New endpoints in bot com-
ponent

19% 13%

New endpoints with signa-
ture match

9% 8%

Table 1: Malware behavior in SQUEEZE

Table 1 shows an overview of the behavior of malware sam-
ples when analyzed with SQUEEZE using the two proposed ex-
ploration strategies. The first thing we notice is that a significant
fraction of the analyzed samples never trigger SQUEEZE’s block-
ing mechanisms. With strategy A, only 54% of analyzed samples
ever try to contact a known C&C endpoint. Likewise, with strat-
egy B only 58% of analyzed samples generate traffic that matches
our C&C signatures. This is despite the fact that all of the samples
in our dataset, when originally analyzed in Anubis, had performed
signature-matching traffic that led us to detect an endpoint in the
first place. We have found that in some cases the original binary
is actually a downloader: In the Anubis execution, it dropped a
remote-controlled bot, but in the SQUEEZE execution it dropped a
completely different payload. In other cases some of the endpoints
contacted by the sample were no longer available. One reason for
this is that, during this experiment, the delay between executing
a sample in Anubis and in SQUEEZE was too high (several days).
Results from our deployment (Section 5.5) show that this result can
be improved by reducing this delay.

A large share of the samples, 44% and 43% respectively for
strategies A and B, do not employ a backup strategy at all. That is,
after a C&C endpoint is blocked they show no further network ac-
tivity. The difference between these first two rows of Table 1 leaves
10% and 15% of samples, respectively, where SQUEEZE may have
been able to trigger additional C&C activity. As can be seen in the
last row, 9% and 8% of samples respectively reveal new C&C end-
points when ran in SQUEEZE compared to those they revealed in
Anubis. These endpoints are confirmed by a match against a C&C
signature.

There may be several reasons why, for the remaining samples,
no C&C traffic can be detected. First of all, with the block-first
strategy of approach A, C&C traffic can only occur if the endpoint
is unblocked before the end of the analysis. Then, backup C&C
endpoints may not have been active during analysis. Finally, com-
munication with a backup C&C server might use a slightly different
format that cannot be detected by our C&C signatures. Therefore,
9% and 8% mark the lower bound of samples that revealed valuable
endpoint information. A reasonable upper bound can be given by

also including other endpoints that the bot component connected
to. Recall that the bot component is defined as the set of processes
that have performed C&C activity that matches our signatures or
known endpoints. This provides an upper bound of 19% and 13%
of samples respectively.

Furthermore, the results show that allowing connectivity checks
to go through is important for SQUEEZE’s effectiveness. Over ten
percent of the samples in our dataset performed connectivity checks
by contacting a variety of popular sites such as google.com, mi-
crosoft.com, or weather.yahoo.com. Some samples perform such
checks only at startup, while others test their connectivity again
whenever they fail to contact a C&C server.

Finally, our delay skipping techniques also play a significant
role in SQUEEZE’s effectiveness. For around one third of samples,
SQUEEZE fast-forwards time in the sandbox by at least one minute.
In Section 5.4 we will discuss an example of a malware family that
reveals a significant number of C&C endpoints, but only after skip-
ping a delay of over half an hour.

5.3 Endpoints
Table 2 shows the total number of distinct endpoints contacted
when executing the samples in our datasets in an unmodified Anu-
bis sandbox, as well as the additional endpoints contacted when
using SQUEEZE with the two alternative exploration strategies.

The most important results are the numbers of C&C endpoints
detected shown in the rows labeled “Endpoints with signature match”.
SQUEEZE is able to detect a significant number of C&C endpoints
that were not contacted during the execution of any of the samples
in datasets A and B. SQUEEZE reveals 201 and 185 new C&C end-
points respectively using strategies A and B. This corresponds to
an increase in the number of C&C endpoints that can be extracted
from our two malware datasets of 12.6% and 19.7% respectively.
The number of IPs is significantly lower than the number of do-
mains: Recall that we take into consideration an IP address only
if it is accessed directly rather than obtained through DNS resolu-
tion. While some malware samples contain hard-coded C&C IP
addresses, most rely on the DNS infrastructure to resolve the do-
main names of their backup C&C servers.

As discussed in the previous section, the number of endpoints
with a signature match is only a lower bound for the amount of
C&C endpoints we may have observed. This is chiefly because
our C&C signatures may not match on all of a sample’s C&C con-
nections, particularly if the format of messages to the primary C&C
server is not identical to the format used when communicating with
a backup server. As a rough upper bound for C&C endpoints we
can use all the endpoints contacted by the processes involved in
C&C communication (the bot component). SQUEEZE may there-
fore have revealed up to 714 and 506 new C&C endpoints respec-
tively using strategies A and B. This corresponds to an increase of
29.4% and 32.8% compared to unmodified Anubis.

To further investigate how many of the endpoints revealed by
SQUEEZE are actually malicious, we used nine publicly available
blacklists. For this, we queried these blacklists repeatedly until two
months after running the malware samples. The results are shown
in the row “Endpoints in blacklists”. Table 3 shows a breakdown of
these results for new endpoints (that is, all endpoints that were not
contacted during the baseline Anubis analysis). Of the blacklists
considered, only AMaDa focuses specifically on malware C&C
endpoints. Several of the other blacklists include C&C endpoints as
well as other malicious servers, while Google Safe Browsing and
Norton Safe Web focus on malicious web sites. We nonetheless
include these blacklists because miscreants may use endpoints for
multiple malicious purposes. Note that all of these blacklists are
meant to be deployed to block traffic to or from malicious hosts,
and therefore strive to have extremely low false positive rates. The



Dataset A Baseline Strategy A
Domains IPs Total Domains IPs Total

Endpoints 3562 767 4329 661 942 1603
Endpoints in bot component 2080 362 2432 454 260 714
Endpoints in blacklists 1970 111 2081 391 36 427
Endpoints with signature match 1489 110 1599 195 6 201

Dataset B Baseline Strategy B
Domains IPs Total Domains IPs Total

Endpoints 2627 364 2991 534 325 859
Endpoints in bot component 1330 211 1541 293 213 506
Endpoints in blacklists 1336 81 1417 353 15 368
Endpoints with signature match 885 53 938 184 1 185

Table 2: New endpoints revealed by SQUEEZE compared to baseline (execution in Anubis sandbox)

Blacklist Strategy A Strategy B
Domains IPs Total Domains IPs Total

Google Safe Browsing (Malware) 95 11 106 53 5 58
Norton Safe Web 47 N/A 47 80 N/A 80
Spamhaus (SBL,XBL,DBL) 2 20 22 2 7 9
ClearCloud DNS 281 N/A 281 226 N/A 226
DNS-BH Malware Domain Blocklist 101 N/A 101 86 N/A 86
Malware Domain List (MDL) 11 5 16 15 0 15
malc0de DNS Blackhole 80 3 83 70 1 71
Emerging Threats fwip rules N/A 6 6 N/A 3 3
abuse.ch Malware Database (AMaDa) 32 2 34 40 2 42
Total Blacklisted 391 36 427 353 15 368
Total Endpoints 661 942 1603 534 325 859

Table 3: New endpoints revealed by SQUEEZE listed in publicly available blacklists

results are very different for domains and IP addresses: 62.5% of
domains are listed in at least one blacklist, while the same is the
case for only 4% of IPs. Overall, however, SQUEEZE has contacted
427 and 368 additional blacklisted endpoints using strategies A and
B. Compared to the blacklisted endpoints revealed by Anubis, this
is an increase of 20.5% and 26.0% respectively.

In conclusion, an estimate of the percentage of additional C&C
servers revealed by SQUEEZE ranges between a minimum of 12.6%
(confirmed C&C endpoints for strategy A) and a maximum of 32.8%
(endpoints in bot component for strategy B). For automatically-
generated C&C blacklists, such as the one provided by FIRE [20],
these results have practical implications. The reason is that they
demonstrate that, by complementing a malware analysis system
with SQUEEZE, we can generate blacklists that provide a signifi-
cantly improved coverage of malware C&C servers.

5.4 Qualitative Results

In this section, we will highlight some interesting aspects of the
behavior of samples analyzed with SQUEEZE, with particular em-
phasis on those belonging to the top twenty malware families from
the FireEye report [30].

Palevo/Butterfly is a botnet toolkit that, according to [30], is be-
hind the currently most prevalent malware family. With SQUEEZE,
we were able to observe the backup C&C strategies employed by
Palevo samples. For this, strategy B was particularly effective.
These samples initially attempt to contact a static IP address. This
traffic matches our C&C signatures. After this endpoint is blocked,
they attempt to contact another static IP (once again matching our
signatures). Finally, they fall back to a domain generation algo-
rithm. One sample in particular tried to resolve 42 generated do-
mains during the analysis run, none of which were actually active.

Samples of the Pakes malware family fall back to a number of
backup C&C endpoints when their primary C&C is blocked. Be-

fore attempting to contact each successive endpoint, however, these
samples idle for several minutes. This delayed execution behavior
is implemented with repeated calls to GetTickCount. Therefore,
SQUEEZE was able to skip these delays. For one sample, analysis
with strategy A revealed 20 additional endpoints compared to the
original Anubis run, but only after sending time forward by over
half an hour. As soon as Pakes is able to contact a C&C server, it
receives instructions to send spam.

Koobface is another interesting malware family, because it strad-
dles the line between client-server and P2P botnet C&C. As re-
ported by Thomas et al. [11], Koobface sets up HTTP-based C&C
servers on machines it has exploited. According to Thomas et al.,
close to one hundred such parasitic C&C servers are active on a
given day. During analysis, Koobface samples initially performed
a connection check by contacting the Google main page. Then they
tried to contact a number of hardcoded C&C servers. By blocking
them one after the other, SQUEEZE was able to trigger connections
to up to fifty C&C endpoints before the six minute timeout. In this
case, simply increasing the timeout would presumably allow us to
detect further C&C endpoints.

The Piptea malware family (also known as Harnig) is a trojan
downloader. During normal execution, samples contact the primary
C&C server and query it via HTTP to retrieve encrypted download
instructions. If the primary C&C server is unreachable, a second
one serves as a fallback. However, the Piptea botnet was put of-
fline, presumably by its operators, shortly after the Rustock take-
down on March 17th, 2011 [32]. Since this was the first day of
our evaluation period, we are able to observe this in our results. A
few Piptea samples analyzed on March 17th successfully contacted
their C&C servers. Those analyzed on a later date, however, could
reach neither their primary nor their backup C&C servers.

Another interesting sample was also a downloader, most likely
related to a pay-per-install affiliate program. This dropper queries



a C&C server using a proprietary, plain-text protocol for which we
do not have a signature. The server then provides a list of URLs
from which to download additional executables. In our analysis,
the dropper downloaded and executed three additional binaries one
after the other. All three binaries are recognized by anti-virus en-
gines as malicious, but interestingly do not seem to be related to
each other: The dropper is thus installing multiple malware strains
on the same machine. The third executable is a bot, and our sig-
natures were able to detect its C&C traffic and the corresponding
endpoint. When strategy B blocked this endpoint, the bot attempted
to contact a backup C&C domain that had not yet been registered.

While SQUEEZE was able to reveal the backup C&C strategies
employed by some malware families, there are also families that
displayed no such behavior: After a C&C server was blocked,
these samples simply idled or performed a default behavior such
as network- or file-based propagation. We further investigated two
such families, and concluded that indeed these malware samples do
not employ a backup C&C strategy.

The first such family we investigated is Virut. Virut spreads by
file infection, and its bot component is rather basic: The samples in
our dataset use only a single IRC C&C server, which they contact
to get download information on further binaries. If this server is
unavailable, Virut’s activity is limited to spreading.

The second family is Zbot. Zbot samples stem from the Zeus
toolkit [5], which allows users to create their own, customized bot-
net. None of the samples we analyzed with SQUEEZE displayed a
backup strategy when their first C&C server was blocked; In fact
they remained completely idle. This seems surprising, consider-
ing that Zeus is still widely successful despite efforts from projects
such as Zeustracker to identify and blacklist its C&C servers. The
recently published source code of the Zeus toolkit (Version 2.0.8.9),
however, allowed us to confirm this observation: Although zBot
can use various C&C servers, it first relies on a primary C&C server
to provide the bot configuration. This server is compiled into the
binary and can thus only be changed by means of a binary update.
To increase reslience, operators of Zeus-based botnets presumably
rely on frequent updates to their bot binaries. If this is the case, a
malware analysis system could reveal more Zbot C&C servers if it
were to capture updated binaries downloaded during analysis, and
periodically re-analyze the latest version. We leave this for future
work.

5.5 Deployment
Based on the encouraging evaluation results we set up a stable de-
ployment of SQUEEZE, integrated with the Anubis infrastructure.
This deployment uses strategy B, and is configured to re-analyze
all samples that matched a C&C signature in the original Anubis
run. From the beginning of June until the end of August 2011, over
32.000 samples were re-analyzed by SQUEEZE. During this pe-
riod, plain Anubis found a total of 4355 distinct endpoints in the
bot component and 2338 distinct endpoints with a signature match.
Squeeze improved this by revealing an additional 1706 (39%) and
278 (12%) endpoints respectively.

We tested the statistical significance of these results using a single-
tailed Wilcoxon signed-rank test [33]. The research hypothesis
states that an analysis with SQUEEZE reveals more endpoints than a
plain Anubis run. The null hypothesis is rejected with a probability
of error below 0.001% when applying the test to either endpoints
in the bot component or endpoints with a signature match.

The deployment also backed our assumption that decreasing the
delay until re-analysis would have a positive effect on the share
of samples that re-connect to a C&C endpoint. While in Table 1
only 58% of samples re-analyzed with SQUEEZE matched a C&C
signature, this number rises to over 90% in our live deployment,
where the average delay between analysis in Anubis and re-analysis

in SQUEEZE is reduced to eleven hours.
As a consequence, the FIRE service5, which makes use of Anu-

bis as a source of C&C information, directly benefits from SQUEEZE.
This improves the coverage of both the FIRE blacklist and of its
ranking of “malicious networks”.

6 Limitations and Future Work
In this section we briefly discuss the main limitations of our ap-
proach. The first challenge is posed by the communication method
used by botnets. First of all, our approach is of limited utility
against botnets that use a fully decentralized P2P architecture. While
SQUEEZE could still investigate the traffic and even block connec-
tions, it would simply produce a list of infected peers. Thus, mit-
igating P2P botnets clearly requires alternative approaches. How-
ever, as was discussed in Section 5.1, the majority of today’s most
prevalent malware families make use of client-server C&C. Thus,
SQUEEZE can provide useful intelligence in the current threat land-
scape. Another issue is that botnets could use encrypted C&C pro-
tocols that are harder to detect at the network level. However, the
specific mechanism used to model and detect C&C communication
is largely orthogonal to our work. SQUEEZE could be combined
with C&C detection techniques that do not suffer from this limita-
tion, such as those based on behavioral detection at the network
level [23], or on host-based analysis of information flows [26].
Strategy A, in particular, can be trivially combined with arbitrary
C&C detection mechanisms.

A further limitation is that our tool can currently provide limited
information on DGAs it triggers. That is, SQUEEZE can observe
a number of requests going to generated domains, however it can
neither detect that these are C&C servers (since they are typically
offline) nor reveal how the DGA works. This limitation can be
overcome by applying slicing and gadget extraction techniques [34]
that can extract the DGA as a functional, self-contained piece of
code that can be used to generate new domains. Finally, like most
techniques based on the dynamic analysis of malware, SQUEEZE
may be thwarted by malware that detects it is running in an instru-
mented environment and refuses to run. In recent years, a number
of techniques have been proposed that attempt to mitigate this prob-
lem [35, 36, 37, 38, 39, 40].

7 Related Work
Botnets have been the subject of a significant amount of research. A
survey of this topic has been performed by Bailey et al.[41]. Sev-
eral studies have been performed with the goal of measuring and
understanding the botnet phenomenon [4, 5, 6, 8, 9, 11, 12]. In
other cases, researchers went a step further and actively infiltrated
a botnet with the goal of obtaining further insight, taking down or
even taking over the botnet [7, 3, 13, 14]. Another well-explored
topic is the network-level detection of botnets, based on the bots’
crowd-like behavior [42], on their reaction to C&C commands at
the network [23] or host level [26], or on signatures generated by
detecting recurrent patterns in botnet traffic [24, 25]. These ap-
proaches can be used either to create detection models that can be
deployed to protect a network and detect which machines are al-
ready infected, or to detect and blacklist C&C servers. FIRE [20]
identifies malware C&C servers and tracks their uptime, to iden-
tify networks that persistently host malicious activities. This has
already led some ISPs to take an interest in the issue and improve
their security practices [43]. SQUEEZE can be readily adapted to
take advantage of any of these techniques for detecting C&C com-
munication.

Limited coverage is a general problem of dynamic program anal-
ysis. Techniques to overcome this limitation have been proposed in
5http://maliciousnetworks.org



a number of fields such as software testings [44] and vulnerabil-
ity discovery [45]. In the context of malware, Limbo [46] aims to
recognize malicious device drivers (rootkits) by forcing execution
to traverse the driver’s control flow graph. Limbo however cannot
ensure that the program state (that is, the values of registers and
memory) is consistent with the program paths it is forcing. Other
approaches [1, 47] overcome this limitation. Multi-path explo-
ration [1] is the approach most closely related to our work, since it
explores possible execution paths by modifying the execution envi-
ronment before reverting to a snapshot. Multi-path exploration uses
a constraint solver to find out how to modify the environment to
lead execution down an alternative branch. MineSweeper [47] sim-
ilarly aims to uncover trigger-based malware behavior using a com-
bination of concrete and symbolic execution. While useful, these
techniques suffer from the path explosion problem: The overall
number of program paths that need to be explored grows exponen-
tially. The reason is that, at each interesting branch in the program,
the analysis has to follow two successor paths. Furthermore, code
obfuscation can make the constraint solving step required by such
tools provably hard [48]. SQUEEZE does not attempt to discover
triggers for hidden behavior: Instead, it assumes that the behavior
of interest (backup C&C communication) is triggered by the un-
availability of network resources. This reduces the execution space
that has to be explored to the (much smaller) endpoints tree, such
as the one shown in Figure 2.

A different approach for increasing coverage is used by Rean-
imator [49]. By automatically identifying and modeling the code
responsible for an observed behavior, Reanimator is able to recog-
nize the same capability in other programs even if it is not observed
at run-time. A limitation is that a behavior has to be triggered in at
least one malware execution before it can be modeled.

8 Conclusion
Modern botnets are complex distributed systems designed to be
resilient in the face of takedown attempts. To avoid losing con-
trol over their infected computers, botmasters use redundant C&C
servers and failover C&C strategies such as domain generation al-
gorithms. While it is possible to detect malware C&C servers by
monitoring the execution of bots in a controlled environment, this
approach suffers from limited coverage and will not reveal all C&C
servers. Connections to backup C&C servers will not be triggered
until the primary servers are taken down. In this paper we have in-
troduced SQUEEZE, a system that uses a specialized form of multi-
path exploration to trick bot binaries into revealing additional C&C
endpoints and failover strategies. We introduced two alternative
strategies for making use of domain knowledge on C&C commu-
nication to efficiently explore the execution paths that are revealed
when communication with a contacted endpoint is allowed or blocked.
By testing SQUEEZE on a diverse and representative malware dataset
and comparing it against an ordinary analysis sandbox, we showed
that it can reveal hundreds of additional active C&C servers and
trigger DGA algorithms that bots use as a failover strategy.
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