
0

Application-tailored I/O with Streamline

WILLEM DE BRUIJN, HERBERT BOS and HENRI BAL, Vrije Universiteit Amsterdam

Streamline is a stream-based OS communication subsystem that spans from peripheral hardware to
userspace processes. It improves performance of I/O-bound applications (such as webservers and streaming

media applications) by constructing tailor-made I/O paths through the operating system for each applica-
tion at runtime. Path optimization removes unnecessary copying, context switching and cache replacement
and integrates specialized hardware. Streamline automates optimization and only presents users a clear,
concise job control language based on Unix pipelines. For backward compatibility Streamline also presents

well known files, pipes and sockets abstractions. Observed throughput improvement over Linux 2.6.24 for
networking applications is up to 30-fold, but two-fold is more typical.

Categories and Subject Descriptors: D.4.4 [Software]: Operating Systems—Communications Management;
D.4.8 [Software]: Operating Systems—Performance

General Terms: Design, Measurement, Performance

Additional Key Words and Phrases: I/O buffering, streams and filters, zero-copy

1. INTRODUCTION

The bottleneck in system software has moved from the CPU to the memory system, es-
pecially for I/O-intensive tasks such as networking [1995]. Operating systems have not
structurally changed to reflect this reality, with the result that architectural decisions
made in the past hinder applications today. They waste CPU cycles copying data be-
tween kernel subsystems and across memory protection boundaries. They waste cycles
switching tasks too frequently. To make matters worse, they waste cycles refreshing
caches as a result of all this copying and context switching. An application binary in-
terface (ABI) at the abstraction level of Posix calls incurs many mode switches between
userspace and kernel mode by handling packets one at a time; multi-user OS access
control imposes copy semantics across memory protection domains even on dedicated
(i.e., single user) servers. These inefficiencies result from fundamental architecture
choices and can only be resolved through comprehensive OS restructuring. Failure to
resolve the issues systematically has led to application-specific solutions, such as disk
caches duplicated in userspace (in server-side script engines) or kernelspace applica-
tion servers. This road is far from ideal, as it increases code complexity, memory- and
CPU utilization, and reduces robustness.

A second operating system I/O obstacle, and one that is rapidly gaining importance,
is lack of support for heterogeneous hardware designs, such as the Cell or AMD Fu-
sion. The Cell may be the first asymmetric multicore processor in wide use, but all

This work was supported in part by the EU through the projects SysSec (FP7-ICT-257007), and i-Code
(funded by the Prevention, Preparedness and Consequence Management of Terrorism and other Security-
related Risks Programme of the European Commission Directorate-General for Home Affairs). Author’s
address: W. de Bruijn, Computer Systems, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV
Amsterdam, The Netherlands.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2011 ACM 0734-2071/2011/05-ART0 $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Computer Systems, Vol. 29, No. 2, Article 0, Publication date: May 2011.

0:2 Willem de Bruijn et al.

major manufacturers have plans to integrate specialized logic such as programmable
graphics/SIMD coprocessors, network interfaces (NICs), encryption modules and even
FPGAs on-chip. As specialized resources can process up to orders of magnitude faster
than equivalent software running on a CPU, these must be employed universally.

The operating system is capable of safely and fairly multiplexing resources among
all tasks, but traditional monolithic systems impose strict functional boundaries be-
tween application, kernel and device and limit hardware support to a handful of hard-
wired operations, such as TCP checksumming. Manycore computer systems offer more
flexible layouts, including space multiplexing and heterogeneous cores, but conversely,
need new programming models to economically define malleable applications that
scale with hardware resources and workload.

An I/O architecture is the communication fabric linking applications, OS kernel and
hardware, that extends from library interfaces in userspace down to peripheral de-
vices. It crosscuts the classical OS layering. The present I/O architecture not only
impedes performance on conventional hardware, it also obstructs the use of hetero-
geneous hardware. In this paper we present Streamline, an I/O architecture for com-
modity operating systems that avoids common I/O bottlenecks and enables clean in-
tegration of arbitrary hardware. Streamline specializes I/O logic on-demand to match
application profiles and hardware configurations, a design that we term application-
tailored I/O. To achieve this, it has the following distinctive characteristics:

(1) a buffer management system for I/O that avoids common copy, context switch and
cache miss overhead through shared memory transport and indirection.

(2) a dataplane that bypasses bottlenecks and integrates all hardware by selecting
suitable implementations of logic on-demand to form I/O paths: graphs of process-
ing and buffering elements.

(3) a control system that automatically translates application requests expressed as
abstract Unix-like pipelines into I/O path implementations tailored to the applica-
tion profile and local hardware characteristics.

On top of this we have engineered legacy I/O interfaces to allow direct comparison with
Linux. The contribution of this paper is to show that this architecture:

I Increases Unix primitive throughput 2x to 30x over standard Linux.
II Increases legacy application throughput up to 4x.
III Increases throughput further when modified call semantics are allowed.
IV Enables intrinsically efficient and portable native applications.

This paper is organized as follows: we start by presenting the application domain for
Streamline in Section 2. Section 3 introduces the architecture and Section 4 presents
the interface. The following three sections each detail one of the main components:
buffering (Section 5), processing (Section 6) and control (Section 7). Section 8 discusses
security aspects; Section 9 evaluates the system quantitatively, the next discusses re-
lated work and Section 11 draws conclusions.

2. APPLICATION DOMAIN

This paper identifies and removes structural bottlenecks in operating system I/O. To
limit the problem space, we focus on network applications. Disk, graphics and audio
processing are discussed in as far as they affect network applications. Disk I/O, for in-
stance, is a critical factor in web serving. We target dedicated workstations and servers
(as opposed to multi-user time-sharing systems), because these are predominant today.
While Streamline offers Unix-equivalent isolation, we demonstrate that performance
can increase further when a reduction in isolation is accepted. Our primary measure
of performance (and hence success) is throughput.

ACM Transactions on Computer Systems, Vol. 29, No. 2, Article 0, Publication date: May 2011.

Application-tailored I/O with Streamline 0:3

It is harder to demonstrate utility of a new I/O architecture by improving existing
application throughput than by handcrafting programs to make use of all unique fea-
tures. Besides evaluating individual contributions to show their merit in vitro, pipes to
show real Unix primitive improvement, and native applications to demonstrate novel
features, we measure performance of several mature legacy applications, to demon-
strate that Streamline is useful even for applications not written with its design in
mind.

2.1. Representative Legacy Applications

Because no single task can expose all system weaknesses, we have compiled an appli-
cation set for benchmarking, each element of which exemplifies a common I/O process-
ing profile. As our current TCP implementation is incomplete (and TCP itself is not
our prime concern), we selected a variety of UDP applications.

DNS server. DNS servers represent critical applications that must scale to high
request rates, but incur only minimal memory- and disk I/O. This characteristic
makes them well-suited to identify context switch and per-packet computational
overhead. We benchmark the industry standard daemon bind.
Streaming video client. Video streaming also scales to high rates, but with
large per-packet payloads. This task demonstrates memory-bound processing. We
use the popular mplayer application for our benchmarks and avoid stressing the
CPU by disabling codec processing.
Traffic analyzer. Traffic analyzers, such as intrusion detection systems, connec-
tion trackers and malware blockers, are secondary tasks that attach to existing
I/O paths. They show the cost of data duplication in an I/O architecture. We attach
the well-known tcpdump analyzer to a moderate datastream to observe multitask
performance degradation.
Disk duplicator. A common pattern is to stream data from the disk (or disk
cache) to the network. We isolate the performance benefit of zerocopy transfer from
the cache by copying data using the popular Unix dd disk duplication utility.

2.2. Bottlenecks

On monolithic operating systems such as Linux, streaming I/O applications encounter
one or more of the common bottlenecks presented in Figure 1. Transport overhead ac-
crues where data is forwarded, at the crossings between hard- and software compart-
ments. Computation issues can occur anywhere; these are the result of a poor match
of application to available hardware. We now discuss the six bottlenecks.

1. System Calls. Commonly, processes communicate with the kernel through sys-
tem calls that require a mode-transition and copy operation for each block.
2. IPC. System call overhead affects inter process communication (IPC) most.
Traffic between applications is copied twice and per-call block size is constrained
(often to 4 KB), causing frequent task-switching.
3. Group Communication. Multiprocess access to the same data is seen in
group communication (which subsumes 2-party IPC) and when auxiliary tasks
such as traffic monitors are enabled. As in the IPC case, access to shared data
requires a copy for each process and frequent task-switching.
4. Kernel Subsystems. Between kernel subsystems copying is required when in-
terfaces are incompatible. A classic example is having to copy between the disk
cache and network queues while pinning of memory pages suffices in principle.
5. Direct I/O. Data traverses the kernel even when it performs no operation.
High-speed devices (e.g., DAG cards [Cleary et al. 2000]) present libraries that
bypass this bottleneck, but these require superuser privileges and exclusive device

ACM Transactions on Computer Systems, Vol. 29, No. 2, Article 0, Publication date: May 2011.

0:4 Willem de Bruijn et al.

Fig. 1. I/O Bottlenecks in a monolithic OS—the numbers are explained in the text in Sect. 2.2

access and they replace generic I/O primitives with vendor-specific APIs. An OS
approach combines standard kernel control for resource multiplexing and device
configuration with generic kernel bypass interfaces on the datapath.
6. Fixed Logic. Applications sometimes encounter the above bottlenecks unnec-
essarily, because OSes force all to structure I/O logic the same way. A fileserver can
save two copies by moving fast-path logic to the kernel; a DNS daemon can reduce
latency by bypassing the kernel completely.

In Section 9 we return to the presented bottlenecks and applications and analyze
Streamline’s effect on them. First, we present its architecture in detail, starting in the
next section with a overview.

3. ARCHITECTURE

Application-tailored I/O as espoused by Streamline avoids common I/O bottlenecks
by reconfiguring datapath logic at application load time to match workload and ex-
ploit special-purpose hardware. In general, the two extremes in coping with heteroge-
neous hardware and software configurations are (a) not to deal with it at all (static
code), and (b) fully recompile all the code with specific optimizations for each spe-
cific configuration. Streamline implements a mid-way point between static code and
full recompilation, because both are impractical. The first cannot anticipate all com-
puter architectures and applications. The second requires a single tool-chain capable
of programming all available devices on each end host. Instead, Streamline constructs
application-tailored I/O paths at runtime from sets of precompiled processing and
buffering elements. It avoids bottlenecks by optimizing the mapping of applications
onto the physical computer architecture: a tailoring algorithm selects the set of ele-
ments that (1) satisfies the application, (2) maximizes the use of specialized hardware
and (3) minimizes data movement, in that order. The Streamline architecture consists
of three components: processing, buffering and control.

Processing. Automatic path optimization requires a simple application model, for
which purpose Streamline reuses the well known streams and filters model [1984]. It
refines the implementation to avoid unnecessary cost from context switching, copying
and cache misses. Specifically, it moves processing close to the data and minimizes
data copying and task switching between stages.

The streams and filters model is appropriate for streaming I/O in principle, but the
most widely used implementation, Unix pipelines, introduces considerable data move-

ACM Transactions on Computer Systems, Vol. 29, No. 2, Article 0, Publication date: May 2011.

Application-tailored I/O with Streamline 0:5

ment and task switching cost. As a result, Unix pipes are much loved, but little used
when performance matters. An implementation based on low level fork() and pipe()
calls lacks a global application view and therefore fails to exploit modern computer
architecture opportunities such as cache-aware or gang scheduling.

Besides scheduling, Unix pipelines impose considerable I/O cost. Processes spend
many cycles reading from and writing to pipes, a source of copying and task switch-
ing. This cost would be unavoidable if filters modify data considerably, but many only
want to read, group, split, discard or append it, all of which can be implemented more
efficiently. For instance, in networking, many filters touch data only for reading, such
as in protocol demultiplexing, or to make minor changes, such as in header stripping.
Because data passing between filters is one of the most often executed parts of the
system, keeping this task cheap is essential.

Streamline incorporates existing Unix processes as filters, but also more efficient
callback functions that support signal moderation and shared memory. Unlike a Unix
OS scheduler, the Streamline runtime system uses its end-to-end view of pipelines to
optimize filter placement, signaling and data movement across user processes, kernel
tasks and devices. Filters inform processing by annotating data with metadata, in
the form of per-block classification values. For instance, an MPEG video decoder can
announce the frametype of a data block to downstream filters. A TCP reassembler
identifies the particular TCP stream that each segment corresponds to.

Buffering. Because the impact of buffering on overall performance continues to
grow as memory latency falls behind CPU speed increases [Wulf and McKee 1995],
buffer management is a critical factor in I/O application performance, While the dat-
aplane presents a view of streams and filters, underneath data moves using a differ-
ent shared memory model to minimize copying and maximize cache hitrate. Reconfig-
urable systems require flexible buffer management that can route data to where it is
needed. We present a buffer management system (BMS) that spans across software
tasks and peripheral hardware and that is designed for throughput as follows: all live
data is kept in coarse-grain ring buffers, buffers are shared long-term between pro-
tection domains and data transformation is replaced with updates to metadata struc-
tures.

Control. A pipeline easily comprises tens of buffering and filtering elements. This
is the basis for application tailoring: optimization at application load-time of I/O paths
by selecting filter and buffer implementations that maximize throughput. Construct-
ing an optimal I/O path configuration for each application type and hardware architec-
ture is a long, repetitive and error-prone task, involving resource discovery, -selection
and -allocation. To minimize code duplication and prevent suboptimal configurations,
this task is automated instead of passed on to application developers. Streamline only
presents its users with a simple and familiar declarative interface that resembles Unix
shell expressions.

Implementation. We have implemented Streamline as a combination of a Linux ker-
nel module, a userspace library and a set of device drivers that completely replaces
native I/O in Linux 2.6 (for x86 and AMD64 targets). Streamline is open source1 soft-
ware and has been used to build real performance-critical network applications, such
as an application-layer firewall and a 10Gb cryptographic token-based switch. Stream-
line has also been ported to userspace Solaris and Intel IXP 1200 and 2x00 network
processors.

1Available from http://netstreamline.org/ under a mixed BSD/LGPL license.

ACM Transactions on Computer Systems, Vol. 29, No. 2, Article 0, Publication date: May 2011.

0:6 Willem de Bruijn et al.

The three components of buffering, processing and control form the main Streamline
I/O architecture. The next section introduces Streamline through it interfaces. The
following three sections each discuss one major architectural component.

4. INTERFACES

Streamline reuses proven interfaces where possible. We base our syntax on Unix
I/O [Ritchie 1984] and only deviate when functional or performance constraints de-
mand it. More important than syntax is that it follows the design principles of Unix:
in particular, that “everything is a file”, i.e., that all resources live in the same filepath
namespace and expose the same file interface. In Unix, several resources actually do
not conform, such as semaphores and network channels. Also, much high performance
I/O is pushed to kernel and device pipelines (network, video, audio and graphics pro-
cessing) that lack access to the Unix interfaces – most likely in part because Unix
I/O is considered too inefficient. Streamline opens up these kernel streams through
a virtual filesystem, to render all system I/O programmable with existing tools and
so enable shell programming of high-rate tasks. It applies the Unix shell language to
network application programming, which it extends with parallelism and (Boolean)
filtering support. To be able to offload work, it applies the same shell job control to
kernel and peripheral tasks. The single system-wide interface ensures that the buffer-
ing and processing enhancements of the next two chapters apply universally and that
the control plane can optimize code placement throughout the stack without interface
compatibility concerns.

4.1. Stream Filesystem

Streamline renders kernel streams and pipelines accessible to Unix applications and
shells through PipesFS [de Bruijn and Bos 2008b]: a filesystem that presents pipelines
as a directory hierarchy where each directory encapsulates a filter and nesting sym-
bolizes data flow from parent to child. The output of each filter can be tapped from a
Unix pipe node in the directory. The filesystem interface serves a dual purpose. One, it
exposes all active I/O streams in the kernel to user processes, opening them up to so-
phisticated monitoring and transformation applications, including existing tools such
as grep and even shell scripts. Second, through directory operations such as mkdir and
slink, it exposes a low-level pipeline construction API through which applications can
modify kernel logic at runtime. A filesystem interface makes it trivial to, for instance,
log all webserver requests to a compressed archive. For PipesFS mounted at /pipes
the shell job

cat /pipes/rx/ip/dport/80/untcp/http/get/all | gzip > log.gz

suffices. The gzip application reads data produced by an in-kernel get request filter
from that filter’s Unix pipe all. The filter first acquired data from another filter, one
for http traffic, which received it from yet a lower layer, etcetera. Modifying a pipeline,
for instance to insert a layer 7 protocol filter when a vulnerability in the webserver
is discovered, is as simple. The filter does not have to run in the vulnerable kernel:
a userspace program, which can be as common as grep or sed, can be placed in be-
tween two kernel components. We return to this example and discuss its performance
implications after introducing the pertinent filesystem components.

Pipeline Control. Each directory in PipesFS represents an active Streamline filter
running in the kernel. Users can insert, remove and mirror directories with the mkdir,
rmdir and slink Linux system calls. Conceptually, data flows down the tree from par-
ent to child directories. Directory creation with mkdir constructs a new filter in the
kernel and connects its input to the output of its parent. Mirroring with slink is es-

ACM Transactions on Computer Systems, Vol. 29, No. 2, Article 0, Publication date: May 2011.

Application-tailored I/O with Streamline 0:7

if ((fd = open("/dev/term/a", O_RDWR)) < 0) {
perror("open failed");
exit(1);

}
if (ioctl(fd, I_PUSH, "chconv") < 0) {
perror("ioctl I_PUSH failed");
exit(2);

}

Fig. 2. Inserting a STREAMS module in Solaris 10

sential to define non-linear graphs. Creation of a symbolic link in a new directory
makes that directory an additional parent of the link destination. Once created, filters
can be freely moved and copied. Moving a filter (executing the rename system call on
the directory node) severs the input stream and attaches to the new parent’s output
stream.

Stream access. Each directory holds a pipe node that gives access to its output
stream. Applications can read a duplicate of a kernel stream by opening this pipe
node; writing to the pipe inserts data into the kernel stream. To transform a stream,
an application severs the original stream between parent and child by moving the child
directory to the root level, reads from the former parent’s output pipe and writes to the
child’s input pipe. For instance, to implement a layer 7 (i.e., deep inspection) proto-
col filter, traditionally, all network data must be intercepted in the kernel and parsed
up to the protocol level. With PipesFS, not only can we move this processing out of
the kernel, we can easily attach at any stage in the network stack. Let’s say we want
to drop all HTTP requests containing the unsafe double-dot (..) notation before they
reach our server. The following shell script achieves this (albeit crudely).

mkdir /pipes/httpclean
mv /pipes/[...]/http/get /pipes/httpclean/
cat /pipes/[...]/http/all | grep -v ’..’ > /pipes/httpclean/all

It creates a new directory at the filesystem root, moves the HTTP GET filter in here,
then manually reads the HTTP packets from the original parent, scans them for the
double dot (with grep, which drops matches when -v is given) and writes the results to
the outgoing filter’s parent’s pipe.

Communication between kernel and userspace causes task-switching, cache flushing
and copying. To reach high rates, PipesFS relies on selective buffering between filters
and shared memory streams between kernel and application. PipesFS buffers data
only when a process actively listens on a tap. As a result, the existence of kernel taps
is in itself not a source of overhead: by selectively opening streams users can trade
off overhead and programmability. Section 5 presents the shared memory channels on
which PipesFS relies for fast kernel I/O access.

4.2. Pipeline Job Management

For job control of adaptive applications, Streamline builds a declarative shell language
on top of PipesFS. Many streaming I/O systems expose a graph composition language
similar to PipesFS. Figure 2 reproduces a code snippet from the Solaris 10 STREAMS
programming guide [Sun Microsystems 2005] that shows how to insert a filter into
the kernel. The snippet inadvertently demonstrates how verbose and error prone such
explicit programming of streams and filters is. A declarative language is more concise
and robust, because it automates such boilerplate and can offer robust transactional
semantics. Critically, the high level of abstraction also makes end-to-end optimization
of I/O paths possible.

ACM Transactions on Computer Systems, Vol. 29, No. 2, Article 0, Publication date: May 2011.

0:8 Willem de Bruijn et al.

Streamline presents a pipeline interface and borrows its syntax from Unix shells.
It goes beyond existing shell programming by applying the language also to protected
kernel and device operations. For instance, the pipeline

rx | tcp | http | files

reassembles all incoming TCP streams, selects connections that contain HTTP re-
quests, extracts these requests and saves them to individual files. To be able to express
common networking tasks, such as load balancing, protocol demultiplexing and con-
nection handling, Streamline adds two base features to the pipeline: parallelism and
conditional execution. On top of these, it then constructs optional higher level control
flow, such as looping, Boolean expression and connection handling, without changing
the basic pipeline and at no additional runtime cost.

The plus symbol (‘+’) identifies parallel compositions, as opposed to the sequential
compositions of the pipeline (‘|’). Parentheses may be used to override default operator
precedence. The following request, for instance, defines a firewall that only accepts
three protocols.

tcp | http + ssh + rtsp | inspect

The ‘+’ operator can represent split-join parallelism, but another notation is required
to extend the language to arbitrary digraphs. Arcs that flow to earlier defined parts of
the graph to form cycles are expressed by marking multiple nodes in the expression as
duplicates. For example, the expression

a --name=X | b | a --name=X

maps onto a basic cycle.
Streamline adds arc constraints to pipelines to be able to filter traffic based on

the classification value returned by filters in the pipeline. A default pipe forwards all
classes of data except for class zero. More interesting constraints are set through anno-
tation of the pipe symbol. For example, traffic forwarding is restricted to port 22 with:
‘dport |22 ssh’. Selection is inverted by inserting an exclamation mark. On a web-
server device that only accepts port 80 traffic, all other data is reflected to an intrusion
detection system using dport |!80 ids. For ease of use, Streamline also understands
ranges (‘dport |22:23 log’) and filter-defined names (‘dport |ssh:telnet log’).

Boolean Selection. Often, users want to express filtering as the intersection, union or
inversion of streams. Streamline introduces notation for Boolean selection and imple-
ments these on top of class-based filtering, i.e., without changes to the runtime system.
We append another plus symbol (‘+’) for split-join parallelism with duplicate removal
– in other words, as the union of a set of streams which is equivalent to a logical Or
operation. Analogously, we denote intersection, or the logical And, by adding a multi-
plication symbol (‘+*’) and negation with the exclamation mark (‘!’). All three can be
seen in the example

rx ++ tx | ip | mpeg +* !http

Here, all network traffic is sent to two protocol filters; only video over anything but
HTTP is kept.

Connection Handling. For applications with many short-lived connections, the
quintessential example of which is a webserver, addition and deletion of pipes at run-
time for each connection is too expensive. Connections are more efficiently handled by
multiplexing them over a single long-lived stream. For example, the expression

rx | ip | tcp | pcap | compress | files

encodes a request that filters IP traffic, reconstructs independent TCP streams and
stores each to an individual compressed tracefile.

ACM Transactions on Computer Systems, Vol. 29, No. 2, Article 0, Publication date: May 2011.

Application-tailored I/O with Streamline 0:9

Connection multiplexing is difficult to implement in a generic fashion, because it re-
quires bookkeeping (and hence state) and because this state must be shared between
otherwise independent operations across protection boundaries. Layer-3 routers, in-
cluding those based on streams such as Click [Kohler et al. 2000], have no need for con-
nection multiplexing because they act only on discrete packets. Other network stacks
differentiate streams internally within subsystems, such as within the TCP protocol
handler, but lack a common interface to share this information with other components.
Such solutions are task-specific and localized, causing multiple code blocks to reimple-
ment the same session bookkeeping and to execute the same logic to assign blocks to
sessions. In Streamline, instead, filters can agree to use the classifier to discern among
logically independent streams. Then, only the first filter in a pipeline has to assign
a filter to a session; all successive filters refer to the classifier value to group blocks
into sessions. The TCP stream reassembler, for instance, sets the tag to differentiate
among many independent TCP streams over a single pipe.

4.3. Legacy Interfaces

To support legacy network applications, Streamline implements the popular network
sockets and pcap packet capture interfaces. Both implementations are layered on top
of pipelines, to automatically benefit from fast buffers and I/O path optimization.

Packet Capture. Packet capture is increasingly common, for instance in auditing and
intrusion detection. The most established packet capture interface, simply known as
pcap, applies a Berkeley Packet Filter [McCanne and Jacobson 1993] to all layer 2
network traffic on a host and sends matching frames to a userspace process. Tradi-
tionally, and in Linux today, each frame requires a mode-transition and a copy for each
interested process. Shared ring-buffers implement a more efficient capture solution,
because they remove all runtime copying and virtual memory mapping overhead (as
we will show quantitatively in Section 9.2). Streamline directly maps all layer 2 data
to all interested applications, together with the metadata streams that holds the result
of a BPF filter (this mechanism is discussed in Section 5). It implements the task as a
pipeline, so that the BPF filter is automatically offloaded or replaced by a more efficient
implementation when available. One such implementation that Streamline carries is
FPL, which compiles to native code, currently with x86 and Intel IXP network proces-
sor targets [Bos et al. 2004]. The following request takes all network sources, applies
BPF and exports the stream to userspace.

rx + tx | bpf "tcp" | user

Sockets. Sockets encapsulate common network protocol processing. A socket per-
forms multiplexing, fragmentation, stream reassembly, checksumming and header
generation. As sockets handle both ingress and egress traffic, each socket is imple-
mented as two pipelines. For instance, for a DNS server, the reception pipeline is

rx | udp | dport |53 socket export=yes name=rxport 53

It reads all arriving network data, filters out UDP traffic to port 53 and attaches it
to a socket endpoint. This last filter saves all contents to a buffer named rxport 53.
The socket calls (recv, etc.) operate directly on this buffer. The transmission pipeline is
shorter:

buffer txport 53 |all tx

The first filter sets up a buffer for transmission, txport 53, and begins to listen on all
writes to this buffer, which it forwards data to the transmission filter.

ACM Transactions on Computer Systems, Vol. 29, No. 2, Article 0, Publication date: May 2011.

0:10 Willem de Bruijn et al.

5. BUFFERING

A buffer management system (BMS) controls the movement of data through a com-
puter system. Its design determines the number of copies, data-cache misses and task
switches per block. To maximize end-to-end throughput, these technical buffering de-
tails must be managed centrally, concealed from individual data clients, such as ap-
plications and filters. Therefore, the Streamline BMS2 presents clients only with an
idealized view of streams, as sliding windows over principally unbounded sequences of
blocks.

In this section we explain how Streamline implements this BMS efficiently, i.e., with
a focus on copy -, context switch -, and cache miss avoidance. We introduce a copy and
switch avoiding implementation of single streams based on ring buffers and scale this
to a practical multi-ring system that uses indirection to avoid copying between buffers.
Additionally, we demonstrate how buffers can inflate and deflate to optimize signaling
rate and cache utilization and how rings form a basis for zero-copy communication
channels between applications and high-speed I/O devices.

5.1. Streams and buffers

Because it is appropriate for sequential access and well known, streams export the
classic Unix file interface (open(), read(), etc.) Traditionally, this interface is imple-
mented as part of the ABI, but Streamline makes it available in all spaces and with-
out a mode transition: all calls are local function calls that operate on locally acces-
sible memory buffers (unless dictated otherwise by data access policy). Buffers are
implemented as large contiguous memory regions capable of holding many blocks. To
transport data across memory protection domains with minimal overhead, Stream-
line shares these regions among domains. Previous work has shown that modifying
virtual memory mapping is cheaper than copying [Pasquale et al. 1994]. We increase
these savings by reusing the same mappings for the duration of an I/O path. We will
demonstrate that the reduction in required context-switches improves small block per-
formance.

Pipes. Streams can be viewed as Unix pipes, as both implement volatile streams be-
hind the Unix file interface. Because pipes map directly onto buffers, all optimizations
presented for buffers are also available to pipes. In particular, this means that Stream-
line offers pipes based on shared memory and local function calls, backed by memory
regions scaled to cache size. This model weakens isolation guarantees; if necessary,
buffers also expose a legacy system call interface.

To support concurrent clients in parallel parts of the application graph, Streamline
introduces multiway pipes: group communication channels that multiplex all input
onto all output channels. The function call

int mpipe(int fds[], int num);

creates a single producer descriptor and num − 1 consumer descriptors, each with a
private file offset. We expect that group communication primitives will become increas-
ingly important as on-chip processor parallelism increases. Multiway pipes present a
simple interface for master-worker style communication.

Copy Avoidance. One performance drawback of Unix I/O is that it implements ex-
pensive copy semantics, that is, read and write create private copies of blocks for the
caller. To avoid this cost, we extend the API with peek(int, char **, int), a read-
like function that uses weak move semantics [Brustoloni and Steenkiste 1996]. With

2Presented individually as Beltway Buffers [de Bruijn and Bos 2008a]

ACM Transactions on Computer Systems, Vol. 29, No. 2, Article 0, Publication date: May 2011.

Application-tailored I/O with Streamline 0:11

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 100 10000 1e+06

T
h

ro
u

g
h

p
u

t
(M

B
p

s
)

(l
o

g
s
c
a

le
)

Bytes per call (logscale)

P All
R 4K

R 16K
R 64K

R 256K
R 1M
R 4M

Fig. 3. Copy avoidance with peek. For clarity, peek (’P’)
results are collapsed, because they all overlap.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 500 1000 1500 2000

M
B

p
s

Bytes per call

peek only
fast p/w

read only
fast r/w

peek/write
read/write

Fig. 4. Throughput with splicing (“fast”)

peek, a client receives a direct pointer into the stream. The read call, then, is noth-
ing more than a wrapper around peek, memcpy and exception handling logic. Figure 3
shows the gains obtained by switching from a copy-based read (R) to an indirect peek
(P) call. The figure plots throughput for various DBuf sizes at increasing call sizes (size
of the application buffer passed in read and write calls). As expected, peek throughput
scales linearly for all buffers, as it is purely computational. Read throughput, on the
other hand, experiences memcpy overhead. Even for the smallest packets, it is about one
third slower than peek. Where possible (internally and for error-tolerant applications
such as P2P clients), Streamline uses the peek call.

5.2. Ring buffers

Traditionally, operating systems allocate blocks on-demand and use pointer queues to
group blocks into streams. In contrast, we build static data rings, or DBufs from large
memory regions. A single shared ring has previously been shown to reduce copying cost
between the kernel and userspace processes [Govindan and Anderson 1991; Bos et al.
2004]. Static, shared rings hold a number of advantages over I/O based on dynami-
cally allocated blocks: they amortize allocation and virtual memory management oper-
ations over the lifetime of streams and render sequential access cheap within streams
because blocks are ordered in memory. These advantages are offset by two challenges.
First, they trade memory utilization for speed. As memory density grows faster than
bandwidth, trading off space for speed is increasingly appropriate. Moreover, we will
show that memory pressure can be curtailed. Second, rings are coarse-grain struc-
tures that lack per-block policy enforcement. With few policy groups and devices (the
common case), these issues can be resolved by switching to a multi-ring architecture.
We observed three obstacles to moving to a ring-based architecture, all of which are
resolved by splitting data into a handful of rings:

Security. Processes must be isolated from one another to guarantee data privacy
and correctness. Each Streamline buffer carries an access control policy that fol-
lows familiar Unix file permissions: user, group and other, for both reading and
writing. As with files, with multiple rings, arbitrary security groups can be con-
structed to allow limited, protected data sharing. Protection is enforced per ‘buffer
plus execution space’ pair, because Streamline can check permissions only once, be-
fore mapping in the memory region. As a consequence, policy enforcement causes
no other runtime overhead.

ACM Transactions on Computer Systems, Vol. 29, No. 2, Article 0, Publication date: May 2011.

0:12 Willem de Bruijn et al.

Ibuf

Ibuf

Dbuf

Ibuf

Dbuf

Fig. 5. Chain of data rings holding data and index buffers holding pointers to data

Multiprocessing. Multiprocessing can cause pathological cache behavior,
whereby one CPU causes invalidation of lines in another’s cache without any real
data dependency (“false dependencies”). This is avoided by separating streams and
by splitting buffer metadata into private writable and shared read-only memory
structures. Similar objectives led to the ring-based netchannel architecture for
Linux [Jacobson and Felderman 2006].
Modification. Clients may not modify data stored in shared buffers indiscrimi-
nately. To avoid data corruption, Streamline detects and resolves read/write con-
flicts automatically. If it observes a potential conflict, it creates a private writable
copy of data and updates the modifying client’s pointer (Section 6.1).

For all these reasons, the transport system must support multiple buffers. Interest-
ingly, we can actually exploit this requirement by specializing buffer implementations
to fit the task profile or hardware at hand. For example, packet reception rings allow
overflow, while IPC rings implement blocking semantics. Device driver buffers match
the hardware specification of their specific device. In the end, we weave this array of
buffers together into a coherent transport system with indirect buffers, to which we
now focus our attention.

5.3. Indirection

Presenting clients with an idealized view of private, sequential streams conflicts with
copy-avoidance through buffer sharing. A shared packet reception ring holds multiple
entangled application streams. When one client needs write access to a shared resource
it effectively asks for an independent stream. We can disentangle streams through
copying, but that is expensive. The alternative is to use a type of indirection, such as
hardware protected virtual memory. Because we do not need isolation (as protection
is handled separately by Unix-like access control on buffers), the BMS in Streamline
implements indirection in software, to avoid virtual memory management and page
faulting. Indirection adds computation, but we will show that the cost is offset by the
reduction in data reads and writes. Moreover, the logic is completely handled behind
the file interface, i.e., transparent to the end user. We explain how this is achieved in
section 5.3.2. First we introduce the core logic.

Streamline replaces pointers with indices and pointer queues with index buffers or
“IBufs”, that store the indices. Figure 5 shows the interoperation of IBufs with DBufs.
IBufs differ from pointers in two ways: they replace direct addressing with globally
valid lookup structures and add a small set of metadata fields. Figure 6 shows an
example index that references a DBuf, in this case DBuf-2 on NIC1.

5.3.1. Rich pointers. The main feature of indices is their lookup structure: a “rich”
pointer. Indices must be able to address buffer contents across virtual memory pro-
tection domains. Each index implements a three-level lookup structure consisting of

ACM Transactions on Computer Systems, Vol. 29, No. 2, Article 0, Publication date: May 2011.

Application-tailored I/O with Streamline 0:13

userspace

kernel

�
�
�
�

�
�
�
� len

index

offset
buffer id index offset classifier

IBuf entry

NIC1

buffer id

DBuf−2DBuf−1

Fig. 6. An index points to a range in a DBuf

a systemwide unique identifier of a DBuf, a block index within this buffer, and an op-
tional offset plus length pair to select a region within the block (e.g., a TCP segment
within an Ethernet frame).

Indices from different IBufs may share access to the same DBuf and indices within
the same IBuf may point to blocks in multiple DBufs. Figure 5 shows both situations.
The first situation is common when multiple clients need a private view on data in
a shared ring, which we discussed before. The second situation occurs when a client
needs to access multiple rings, e.g., a server listening on two NICs.

Resolving rich pointers is more expensive than following regular pointers, but this
cost is amortized by caching a translation for subsequent accesses within the same
space. Handling “buffer-faults” is more costly. Such exceptions occur when a referenced
DBuf is not mapped into the current memory protection domain. To maintain the il-
lusion of globally shared memory, buffer-faults are handled similar to demand paging:
an index pointing to a buffer that is not accessible causes the kernel to map the buffer
in the task’s virtual memory (after verifying access permission).

5.3.2. Transparent indirection. The BMS shields clients from indirection details: IBufs
present the same file interface as DBufs and perform read- and write-through to ref-
erenced DBufs internally, so that clients can remain unaware of which they are ac-
cessing. Reading from an IBuf entails resolving the rich pointer and then calling the
peek method of Section 5.1 of the mentioned DBuf. Writing to an IBuf also involves
selecting a DBuf as backing store; currently each space appoints one default buffer.
Such transparent indirection enables copy avoidance behind the interface, known as
splicing [McVoy 1998].

5.3.3. Splicing. When a write request to an IBuf involves data that already resides
in a DBuf, write-through can be avoided. This situation occurs often, not in the least
because we incorporate the disk cache as a DBuf. On top of IBufs we have implemented
splicing: generic, copy-free data transfer between streams.

Splicing has also been integrated into the Linux kernel with version 2.6.17. That
implementation differs from ours in two important ways. First, it introduces a new,
independent, interface for data transfer and is therefore not backward compatible.
Second, it only handles the movement of data within the kernel. While it offers the
same performance advantages as Streamline in certain situations, few applications
have so far been adapted to the Linux splicing model. Splicing in Streamline, on the
other hand, is backward compatible with existing applications. Buffers only present
the file interface; applications are unaware of which transfer method is used under-
neath. During a write to an IBuf, Streamline compares the passed source pointer to
the address ranges of up to N DBufs, whereby we choose N so that the list of ranges fits

ACM Transactions on Computer Systems, Vol. 29, No. 2, Article 0, Publication date: May 2011.

0:14 Willem de Bruijn et al.

in a single cacheline, to minimize runtime overhead. If a list entry matches, Streamline
skips write-through, calculates a rich index and only writes this to the IBuf.

Another optimization increases throughput for the common operation of reading a
block from one stream and writing it unmodified to another. Splicing only reduces the
cost of the write call. However, it is also possible to avoid the copy into the application
buffer during read calls: lazy copying temporarily revokes access to the page(s) under-
lying the buffer instead of copying. If the application forwards data unmodified, write
will receive the same application buffer pointer as read. The call can then splice from
the originating DBuf, instead. Again, Streamline caches the last N pointers for lookup,
as well as the accompanying rich pointers. If a page-fault occurs, instead of splicing,
data is copied lazily. Splicing is then disabled for the buffer, as frequent page-fault
handling actually degrades performance.

Results. We now quantify the effects of splicing on throughput for both peek and
read, whereby we do not optimize the read call through page access revocation. Fig-
ure 4 shows the relative efficiency in transferring data from a DBuf to IBuf, by plotting
each method’s throughput against call size. The test is indicative of file servers, for
instance, where data is read from the page cache and written to the network trans-
mission buffer. The fastest mechanism is peek only: the peek equivalent of read-only
access. This mechanism processes even faster than the physical bus permits, because
no data is touched. The method serves no purpose; we only show it to set an upper
bound on the performance. About half as fast is fast peek/write, which combines peek
with splicing. This, too, does not actually touch any data, but writes out an IBuf ele-
ment. Overhead caused by read can be seen by comparing these two results with those
of read only and fast read/write. They are 3x slower still. Worst results are obtained
when we cannot use splicing, but instead must write out data: throughput drops again,
by another factor 2.5. This experiment clearly shows that combined gains from copy
avoidance are almost an order of magnitude (9x) when all data is cached. Savings will
be even higher for buffers that exceed L2, because then the large blocks will cause
many more d-Cache and TLB misses than the small IBuf elements.

5.4. Size

The size of a buffer influences its maximum throughput in two ways: larger buffers
reduce synchronization overhead (such as task-switching), but smaller buffers experi-
ence fewer cache misses. In ring buffers, miss-rate increases abruptly when a buffer
exceeds the size of a cache, because the common (pseudo) LRU replacement policies
will consistently evict the last accessed and thus first needed slot. On the other hand,
task-switch cost (around 1000 cycles on modern CPUs) dwarfs cache miss overhead.
Buffers must therefore fit in the smallest cache that does not introduce excessive task-
switching. For Ethernet frame-sized blocks, this is usually L2 [Fedorova et al. 2004].
Optimal buffer size can only be determined at runtime, because three factors vary be-
tween systems and during runs: memory architectures (number of cache layers, size,
etc.), memory system contention, and stream rate and variability.

Variable size. To automate runtime optimization of buffer-size, we introduce self-
scaling ring buffers. These adapt their size at runtime based on “buffer pressure”: the
distance between producer and consumer, normalized to buffer size. If pressure goes
above a high-water mark a ring grows; if it drops below the opposite, it shrinks. We
have implemented two types of scaling: ‘reallocation’ and ‘deck-cut’. Both are handled
behind the interface, i.e., transparent to the user.

Reallocation replaces one memory region with another of a different size. A realloca-
tion operation can only be started without copying when the producer reaches the end
of the region (i.e., when it would otherwise wrap around). As long as consumers are ac-

ACM Transactions on Computer Systems, Vol. 29, No. 2, Article 0, Publication date: May 2011.

Application-tailored I/O with Streamline 0:15

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 2 4 6 8 10 12 14 16 18 20

B
u

ff
e

rs
iz

e
 (

K
B

)

Round

static
realloc

deck-cut

(a) Buffer size

 0

 1000

 2000

 3000

 4000

 5000

 0 2 4 6 8 10 12 14 16 18 20

R
a

te
 (

M
B

p
s
)

Round

static
realloc

deck-cut

(b) Throughput
Fig. 7. Effects of scaling at runtime, when each round cuts the buffer size in half

cessing the old region, both regions must be kept in memory. The approach is similar
to rehashing and has the same drawback: during reallocation the buffer takes up more
space than before. Deck-cut avoids this problem. It allocates a maximum-sized buffer,
but can temporarily disable parts of it, in a manner similar to how a deck of cards
is cut: everything behind the cut is left unused. Deck-cut is computationally cheaper
than reallocation, because the only required action is to move the pointer indicating
the start of the ring. As a result, it is well-suited to highly variable conditions. We ex-
ploit this characteristic by moving the watermarks closer together. A drawback is that
it never returns memory to the general allocator.

Scaling is restricted by a few technical considerations. In Streamline, indices (in-
cluding the read and write pointers) must be monotonically increasing numbers (i.e.,
they are not reset during a wrap), because those tell in which loop through the buffer
– and in the case of reallocation in which memory region – an index falls. To learn the
offset of a block in a memory region, one calculates the modulo of the number of slots
in the ring (S). When a buffer scales, S changes. To guarantee correct offset calculation
for all sizes, modulo operations must always overlap. In other words, all values of S
must be natural multiples of the same base. The higher the base, the faster the buffer
expands and contracts (we only use base 2).

Results. Figure 7 compares copy (i.e., write followed by read) throughput for a static
buffer of 16MB with that of rings that gradually self-scale down from 16MB until they
stabilize. A round denotes a decision moment where the buffer can scale: a moment
when the producer wraps around. Figure (a) shows that both scaling buffers continue
to decrease buffer size at each opportunity. Figure (b) shows that, instead of scaling
linearly with buffer size, throughput sees three levels that correspond with access from
main memory, L2 and L1 caches, respectively. The increase in throughput between
main memory and L2 is significant: a three-fold improvement. Deck-cut scales further
down than reallocation as a result of the moved watermarks.

5.5. Device Interfaces

Many network streams originate or terminate at peripheral devices. Without opti-
mization, a single transfer between devices incurs at least one horizontal copy between
the peripheral subsystems (e.g., disk and network) and more commonly two vertical
copies between kernel and userspace, with associated context switches.

Block devices. IO-Lite [Pai et al. 2000] showed that an integrated BMS can remove
copy overhead to and from the disk cache. Streamline extends IO-Lite by making these
savings available to legacy applications through transparent splicing. Unlike IO-Lite,

ACM Transactions on Computer Systems, Vol. 29, No. 2, Article 0, Publication date: May 2011.

0:16 Willem de Bruijn et al.

N
Routine

State

Fig. 8. A filter connected in a network, with one labeled stream

Streamline cannot as yet splice to the cache, because it cooperates with the Linux
native disk cache and both systems demand full control over their contents.

Streamline enables read-only splicing from the disk subsystem by exporting cached
files as DBufs. Like other DBufs, file contents are locally accessible both from kernel-
and userspace. In the kernel, Streamline reflects calls to the Linux virtual filesystem
layer. In userspace, it relies on Linux page-fault handling to map in non-cached pages.
As a result, it makes a well known performance technique – memory-mapped file ac-
cess – available to legacy applications.

Network devices. Streamline communicates with network devices through two rings:
a reception DBuf and a transmission IBuf. The device driver must implement both, be-
cause their formats must agree with all device hardware peculiarities. On the reception
path, the protocol stack complements device DBufs with protocol IBufs to demultiplex
and reassemble traffic in a copy-free manner. Network devices with hardware clas-
sification bypass this logic by directly exporting their own IBufs and protocol filters.
Devices with multiple hardware reception rings can export multiple DBufs.

6. PROCESSING

The second main Streamline component concerns processing. Streamline constructs
I/O applications on-demand from processing and buffering elements. Such applica-
tion tailored-I/O has the potential to maximize throughput, by moving logic close to
data and by exploiting unique hardware features. In the next section we will discuss
how Streamline optimizes element placement. First, we present the reconfigurable
dataplane that is required to execute arbitrary I/O processing operations in arbitrary
configurations efficiently. In this section we present a generic runtime system for ex-
ecuting I/O operations in userspace, kernel and device context and explain why the
basic streams and filters model must be extended to support the various classes of
operations efficiently, especially across multiple software tasks and hardware devices.

6.1. Extended Streams and Filters

A common model for expressing reconfigurable streaming I/O is that of streams and fil-
ters (e.g., [Ritchie 1984; Hutchinson and Peterson 1991; Montz et al. 1994; Welsh et al.
2001; Kohler et al. 2000]), which defines a directed graph where vertices represent I/O
operations, or filters, and edges symbolize I/O transport means, or streams. Streamline
implements this model and extends it with the concept of execution spaces, to be able
to automate the mapping of software onto hardware. A pure SF graph only describes
an I/O path request. An I/O path implementation additionally binds each filter to an
execution space.

Streams. Streams are point-to-point channels between filters. They map trivially
onto ring buffers, to form a store and forward network where each data block is saved
at each edge. But, the reading and writing of indices – let alone data blocks – ex-
ceeds the operational cost of many I/O operations. Streamline avoids this unnecessary
storage cost in the common case. If two connected filters execute in the same mem-
ory protection domain and no external parties (such as controlling application logic)

ACM Transactions on Computer Systems, Vol. 29, No. 2, Article 0, Publication date: May 2011.

Application-tailored I/O with Streamline 0:17

Table I. Filter classes and their requirements

Class Behavior Requirement
Source Bootstraps graph walk Callback interface
Pass-through Stores metadata Random-access storage
Inspection Analyzes stream contents Read-only (shared) stream access
Filtering Classifies stream contents Class-tagged edges
Reordering Modifies stream indirectly Indirect buffers
Rewriting Modifies stream contents Read-write (private) stream access

require on-demand access to the interconnecting stream, it schedules the second fil-
ter immediately after the first and passes a pointer in-memory rather than saving an
index (or the original payload) to an intermediate buffer.

Merging filter execution at runtime in this manner increases data cache hitrate and
removes non-functional scheduling and memory access overhead. The optimization can
be applied recursively throughout a request graph. In practice, Streamline optimizes
away nearly all ring buffer accesses, because memory protection crossings are few and
application logic is commonly interested only in a single stream of the I/O path: the
end-result of all transformations.

Filters. Filters are self-contained routines that can only communicate with each
other through a set of input and output ports to which streams are attached. Incoming
data may arrive on any input port; outgoing data is sent on all output ports. In contrast
to computational kernels, filters may access private state. Figure 8 depicts a simple
configuration. The filter logic is unaware of the number of connected inputs or outputs.
The filter is instantiated by registering it as the callback to a stream. Each filter can
attach to multiple streams, for which it exports a set of ports. When a block arrives on
an input port, the runtime system calls the filter’s routine.

Streamline carries 40-odd filters, implementing such diverse tasks as protocol pro-
cessing (fragmentation, multiplexing, checksumming), filtering (pattern recognition,
anomaly detection), transformation (compression, encryption), accounting, logging and
tunneling. We categorize these into six broad structural classes according to their be-
havior. We briefly discuss each class, present an example filter and indicate what re-
quirements it places on the datapath beyond store and forward. Table I summarizes
the results.

Sources inject blocks into the graph. In practice, they are usually callback functions
on external I/O hardware, such as the soft interrupt handler of the Intel e1000 device
driver. Streamline exports both a simple DBuf injection routine for legacy drivers and
the more efficient zero-copy driver API described in Section 5.5 that fully integrates
device memory as DBufs and descriptor rings as IBufs.

Pass-through filters only process metadata found in indices. This class includes coun-
ters and histograms (e.g., of inter-arrival times). These filters require private memory
that persists across invocations to store their metadata and a mechanism to communi-
cate this information to the end-user. Streamline reuses memory regions for this task,
as these already implement both requirements.

Inspection filters derive metadata by analyzing stream contents. For instance, ipfix
builds a connection database from observed IP packets. These filters require shared
read-only access to streams, which the BMS provides.

Filtering is based on inspection of streams to extract values and combines it with
selection. Applications label edges between filters with class ranges and data is only
forwarded if its value falls within the range. The ipproto filter splits traffic according
to TCP/IP protocol number.

Reordering is the modification of streams through indices alone. The quintessen-
tial example is TCP reassembly. Besides a classical implementation that moves data,

ACM Transactions on Computer Systems, Vol. 29, No. 2, Article 0, Publication date: May 2011.

0:18 Willem de Bruijn et al.

Streamline also carries a zero-copy reassembly filter, which modifies indices’ offset and
length fields and in case of out-of-order arrival reorders indices instead of payload.

Rewriting occurs when data transformation cannot be captured in indices. Filters in
this class must have read/write access to their streams. In a shared-memory system
write access must be restricted, however, to guarantee data consistency. Streamline
requires consumers to call a gateway function before modifying a block. The function
uses runtime system information to prepare a private reference in the most efficient
manner (direct access, copy-on-write, immediate copy), a choice that depends on con-
current clients and block size. If a block becomes fragmented as a result of selective
copying, the runtime system automatically calls the downstream vertices for each frag-
ment.

Spaces. Automating the task of selecting an execution environment for a filter re-
quires a model of the local computer architecture. For this purpose, we extend the
streams and filters model with the concept of execution spaces: combinations of an exe-
cution thread and a memory protection domain. On the x86 architecture, a space maps
one-to-one onto a single threaded user process. On peripheral devices, memory and
processing capabilities may be more limited, for instance lacking virtual memory or
multitasking. Concrete examples of execution spaces include Unix processes, kernel
tasks, GPU stream processors and a multi-ring NIC’s integrated hardware switch.

6.2. Execution

The set of active execution spaces across user processes, kernel tasks and device con-
texts forms the runtime system of Streamline. Each space has a local scheduler queue,
on which it schedules filters as data arrives from sources or as it filters traffic on
streams. This model is particular instance of user-level threading. The express goal
is to replace the task switching common in Unix pipelines by function calling. Spaces
have CPU affinity to be able to reason about global cache use. While BMS design im-
pacts copy overhead, the runtime system strongly influences context switching cost:
because the system schedules downstream filters, it can minimize this overhead by
batching signals – in as far as buffer size permits. The runtime system also decides
whether to use fast local function calling between filters, or whether to save the index
to an IBuf and call downstream filters by sending an explicit signal. Across execution
spaces, the second, slower method is required.

Intra-space. The subset of the I/O path that executes within a single execution space
is implemented as a single event loop. Itself started by a source, this loop recursively
schedules downstream filters in breadth-first order as long as the filters’ classifica-
tion results match their downstream edge labels. By calling filters in rapid succession
for the same datablock, data cache hitrate is maximized at the cost of the instruction
cache. For most graphs, this heuristic indeed gives the most efficient solution, because
the combined instructions tend to fit in the instruction cache together. StreamIt [Ser-
mulins et al. 2005] implements a more refined scheduling policy.

Inter-space. Across execution spaces function calling is not an option. Here we must
resort to another, more expensive, method. Polling and interrupt driven processing
are standard approaches, but both have drawbacks: polling wastes cycles at low rates
and interferes with scheduling; interrupts incur cost at high rates, exactly when the
system is already stressed. Hybrid systems, such as interrupt moderation, clocked
interrupts [Traw and Smith 1993], or interrupt masking (as implemented in Linux
NAPI [NAPI]), evade both pathological cases. Streamline combines interrupt moder-
ation with timeouts to amortize cost at high rates while bounding worst case delivery
latency. Its approach is unique in that both the interrupt moderation threshold and

ACM Transactions on Computer Systems, Vol. 29, No. 2, Article 0, Publication date: May 2011.

Application-tailored I/O with Streamline 0:19

timeout value can be set individually for each buffer. This way, the trade-off between
efficiency and latency can be tuned to application constraints.

 0

 200

 400

 600

 800

 1000

 1200

 0 500 1000 1500 2000

T
h

ro
u

g
h

p
u

t
(M

B
p

s
)

call size (B)

1
2
8

32
128

2048

Fig. 9. Interrupt moderation

Results. Figure 9 shows pipe through-
put offset against call size at various lev-
els of interrupt moderation factor. All re-
sults are obtained with a large DBuf of
16MB, or 8000 slots, so that we have a
wide measurement range for signal mod-
eration. Streamline sends at least one
signal per timeout epoch (in the experi-
ment set at 1000HZ) which limits mod-
eration benefit for very high numbers.
The figure shows that, indeed, through-
put scales below linear. When batching
up to 32 signals we already achieve 92%
of the maximally obtainable gain (with
factor 2048): 2.36x versus 2.56x. For this reason, 32 is the default moderation factor in
Streamline. For IBufs tuning is more involved because we must also prevent overflow
of referenced DBufs. A simple and safe heuristic is to set the threshold to that of the
smallest referenced DBuf.

7. CONTROL

Performance of a pipeline is largely determined by how the I/O path is mapped onto
the local computer architecture: decisions to use function calling over buffering or to
move a function from a process to a device can produce an order of magnitude increase
in throughput for a local segment of an I/O path. But, application of scarce device hard-
ware to the wrong filter can depress end-to-end throughput. Streamline automates the
mapping operation from pipeline onto I/O path to consistently make good (if not nec-
essarily optimal) decisions. This section completes the description of the three main
components in Streamline (buffering, processing, and control) with the discussion of
the automatic control system.

Figure 10 shows the control architecture in Streamline. At the application level, a
parser breaks up the pipeline expressions into a sequence of operations on individ-
ual filters and streams, for example finding all implementations of a filter (discovery)
or attaching a stream to an IBuf (allocation). Spaces locally account their available
resources and manage their own scheduling and forwarding. They respond to discov-
ery and allocation requests over a control RPC mechanism. A simple packet-switched
messaging network interconnects spaces to relay messages from applications down to
kernel tasks and devices.

7.1. Algorithm

The I/O path construction process consists of three phases: discovery, selection and
allocation. Each phase must successfully complete for all filters in the pipeline before
the next phase is entered.

Discovery. The first phase discovers all potential filter implementations. A regular
expression filter, for instance, is implemented in each userspace task, but some high-
performance NICs can cheaply test multiple patterns using content addressable mem-
ory or FPGAs [Hruby et al. 2007]. The discovery phase returns a graph with multiple
candidate filter implementations for each filter.

ACM Transactions on Computer Systems, Vol. 29, No. 2, Article 0, Publication date: May 2011.

0:20 Willem de Bruijn et al.

WANparser micro messaging micro"(a) > (b) | (c) "
calls handlers

space

object
registry

c

a
b

Fig. 10. Control architecture

Selection. Filters with multiple implementations are the basis for adaptation in
Streamline. A selection algorithm prunes a discovery graph that holds sets of can-
didate implementations for nodes into one with a single implementation per node.
In this paper, we eschew complex optimization in favor of a simple heuristic: push
processing down. Spaces are connected more-or-less vertically, from software-isolated
applications at the top to dedicated peripherals such as NICs and GPUs at the bot-
tom. Lower placed spaces generally have access to specialized logic (e.g., ASICs) that
makes them both tailored to a matching task and useless to all others (in contrast to
the contented CPU time higher up). As a result, the algorithm chooses the “deepest”
implementation. For simplicity, the algorithm is greedy: the best match is selected for
each filter, irrespective of global concerns. The only constraint is that I/O paths may
only grow from their source(s) in the direction of their sink(s). All graphs originate at
a few natural sources (network cards, switches, applications, disk) and flow to equally
well-defined sinks. By forcing a single direction for all intermediate I/O paths, we en-
sure that no loops or ping-pong effects will occur and therefore transport cost is min-
imized. Push processing down is easy to understand and performs well in networking
scenarios. However, for robust execution in wider domains, we also investigated more
high fidelity models for which linear solvers compute globally optimal solutions in tens
of milliseconds [de Bruijn 2010].

Allocation. When a collection of filters and streams has been found to satisfy a re-
quest, the elements are allocated and configured by a succession of small construction
requests. Chance of partial failure is high, because allocation takes places across mul-
tiple spaces that are partially independent. For one, concurrent application requests
are not serialized. End-to-end pipeline allocations are transactional, to be able to re-
tract in case of unexpected resource conflict. To achieve this, Streamline requires each
individual allocation call to be atomic, have only binary outcome and have an inverse
operation (if not idempotent). All steps are logged and, in case of failure preceding
steps, are unwound. Allocation steps fall into three phases. First, filter implementa-
tions are instantiated into runnable filters, which combine logic with private state.
Next, streams are attached to the ports. If a stream crosses spaces, output buffering is
enabled and a signaling path is set up (with moderation). Finally, the filters are acti-
vated so that data can start flowing. Activation occurs back to front, from the I/O path
sinks to its sources, so that the entire new path is enabled at once without a need for a
global lock. Streamline applies prefix sharing between I/O paths to further reduce run-
time cost. As pipelines are added to the runtime system, segments that overlap with
existing I/O paths are mapped onto those. Filters benefit from sharing vertices when
they need to perform identical initial steps. This is a common occurrence, for instance,
in protocol stacks, where each socket receive path will want to observe all packets and
filter out its own. Overlapping pipelines has the effect of implementing only a single
protocol demultiplexer. To avoid inconsistent state, only stateless or newly initialized
filters may be shared.

ACM Transactions on Computer Systems, Vol. 29, No. 2, Article 0, Publication date: May 2011.

Application-tailored I/O with Streamline 0:21

8. SECURITY

Streamline gives the same level of protection as Unix, but can also trade isolation
for throughput on a case-by-case basis. On many modern computers systems, more
data can be safely exported to userspace than is current practice. One example is in
network receive processing. Raw packets arriving from the network are by default not
shared on most operating systems to maintain privacy. On a multi-user system where
users cannot access the physical medium the OS indeed is a data access choke-point.
More and more, reception queues can be safely mapped, however. This is certainly
true when (1) all data in a reception buffer is destined for the same application or (2)
isolation is already pierced elsewhere. The first case can hold on systems with multiple
or multiring NICs. Even without such hardware, it is often the case: on dedicated
networked servers that perform a single task, only administrator data is mixed in
with application data. If all superuser traffic is encrypted, as for instance SSH sessions
are, all network packets can be safely mapped read-only into the application context.
The second case occurs when the network outside the host cannot be trusted, in other
words: for all Internet connections.

In this common case, reception queue isolation through copying incurs cost without
offering real protection. Instead, rings can be mapped in one of two ways. Read-write
mapping enables in place modification by applications, but cannot offer integrity pro-
tection when multiple distrusting processes share a buffer. Read-only mapping saves
the copy operation and offers integrity – if not confidentiality. As few applications per-
form in-place modification of receive traffic and the physical network generally also
punctures privacy, this second option is the default.

Receive queue sharing is one example of the general case where composite systems
such as Streamline enable selective access to data and computational resources (fil-
ters). Streamline implements access control by applying Unix permissions to kernel
and device objects. To this goal, Streamline treats spaces as (active) access control
subjects and filters, streams and shared buffers as (passive) objects. In line with Unix
practice, spaces have an identity made up of one unique user account and an optional
set of groups to which the space belongs, denoted by a UID and set of GIDs. Space UID
and GID derive from their controlling user for userspace processes. Kernel spaces are
owned by the root superuser. A filter is owned by its space, but the stream it produces
is owned by the UID that requested instantiation of the filter. With fan-in, stream
permissions correspond to the union of all inputs.

Streams. The use of shared buffers introduces security perimeters independent of
virtual memory protection domains. As we explained in the communication section,
buffers are mapped into a domain once for the duration of use. Protection is enforced
per ‘buffer plus computation space’ pair. Streamline checks permissions only once per
pair: just before mapping a buffer into a space, which can occur during a call to open
or as result of a buffer-fault (similar to a page-fault). Because this is the only occasion
when computation spaces are given access to a new security perimeter, it is a security
‘choke point’ and thus acceptable as the sole policy enforcement gate.

To minimize data copying and virtual memory operations we aim to share buffers
between streams. Multiple streams can safely be stored in the same buffer as follows:
first, streams with identical ownership and permissions can safely coexist in the same
buffer. Second, streams that belong to the same group and that grant the same per-
missions to their group as to their owner can be co-located. Finally, streams that are
accessible by all can share a buffer.

Filters. The model of application paths that extend into the kernel collides with the
practice of isolating users. The system has to defend both the integrity of the kernel

ACM Transactions on Computer Systems, Vol. 29, No. 2, Article 0, Publication date: May 2011.

0:22 Willem de Bruijn et al.

and the privacy of user data. In monolithic network stacks only the superuser may load
extensions into the kernel or onto device hardware. In Streamline, the root may relax
permissions on BPF or other trusted kernel filters to be executable by other users. Ap-
plications written in languages such as BPF, even if inserted by malicious users, cannot
corrupt the system. In this case, security derives from the use of safe filters, including
programmable safe language interpreters and compilers. When a filter has multiple
implementations in different spaces, an application that lacks privileges to access the
efficient implementation on a peripheral device will perhaps witness a drop in perfor-
mance when having to an the application-level version, but not necessarily a drop a
functionality. For example, if a hardware MPEG decoder is protected, the pipeline falls
through to a software implementation. The tcpdump analyzer is protected on Unix, but
Streamline safely gives users the tools to inspect their own communication streams,
possibly with BPF and tcpdump.

9. EVALUATION

We compare a Streamline-enabled version of Linux 2.6.24.2 head-to-head with a stock
version in terms of application throughput (or CPU utilization at steady rate). All tests
were run on an HP 6710b with Intel Core 2 Duo T7300 processor, 4MB L2 cache and 2
GB RAM running in 32-bit mode. We ran the experiments on a single core to minimize
scheduler influence and show the full cost of task switching.

In the previous sections we supported our claims by micro-benchmarks where appli-
cable. The presented numbers substantiate the third of the four quantitative contribu-
tions claimed in the introduction. We now present end-to-end results that correspond
to the other three claims, in order. The first, Unix primitives, displays the raw gains at
the buffer interface level. The second, application benchmarks, shows achievable gains
for applications that use legacy interfaces. The last, native applications, indicates how
the native interface expands application freedom and performance.

9.1. Unix primitives

Figure 11 shows throughput of straightforward copying (a write followed by a read)
through a Unix pipe at varying buffer size and for three IPC implementations: a stan-
dard Linux pipe (with label ‘posix’), a producer/consumer pair of threads that directly
access shared memory (‘Pthreads’) and streamline buffers of varying size. In this test,
we do not use Streamline’s peek optimization and thus copy the same amount of data
as the other applications. Any performance improvement comes from a reduction in
context switching. The threaded application shows an upper bound on achievable per-
formance, because it requires no kernel mode switches at all and it implements a multi-
packet ring. Similar to Streamline rings, its throughput is dependent on buffer size,
but we only show the best case here for clarity (1MB). That configuration outperforms
Linux’s implementation of Unix pipes by a factor 5 for large blocks and 12 for minimal
blocks. In between are 4 differently sized Streamline tail-drop DBufs. We see that the
fastest implementation is neither the largest (64MB), nor the smallest (64KB), but an
intermediate one (1MB). This outperforms Linux by a factor 4 for large and 9 for small
packets and is only between 20 and 33% slower than the optimal case. The precise fac-
tor of throughput increase depends on physical cache size, producer-consumer distance
and whether the application buffer is cached, but the ratios are static; we previously
observed similar results on different hardware [de Bruijn and Bos 2008a].

Figure 12 explains why the highest throughput is achieved with a medium-sized
buffer. Initially, performance grows with the buffer as the number of necessary context
switches drops when calls are less likely to block. Ultimately, however, page-faults
affect performance as the datacache or TLB begins to witness capacity misses. These

ACM Transactions on Computer Systems, Vol. 29, No. 2, Article 0, Publication date: May 2011.

Application-tailored I/O with Streamline 0:23

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 500 1000 1500 2000

T
h

ro
u

g
h

p
u

t
(M

B
p

s
)

call size (B)

64KB
1MB

16MB
Posix

Pthreads

Fig. 11. Unix pipe throughput: rate of various
Streamline configurations compared to threads (best
case) and processes (worst case).

Fig. 12. Pipe cost factors: number of task switches
and cache misses observed at various buffer sizes.

are more expensive than switches, therefore maximum throughput is obtained when
the working-set just fits in the L2 cache.

9.2. Application benchmarks

The micro-benchmarks demonstrate that significant savings in I/O overhead can be
achieved by optimizing buffer parameters and employing copy avoidance. We now in-
vestigate to what extent these savings translate to real application domains. For this
purpose we ran the applications introduced in Section 2 on top of both the Linux and
Streamline versions of sockets and libpcap: bind identifies per-call overhead, mplayer
per-byte overhead, tcpdump parallelization cost and dd splicing effects.

9.2.1. DNS serving with bind. The Bind named daemon replies to DNS requests. We
ran a version 9.4.1 daemon in non-recursive mode and sent it a steady stream of 10
thousand requests per second. DNS messages are small: requests were below 55B and
replies below 130, including IP headers. For this reason, application processing eas-
ily dominates total overhead. Figure 13 shows total CPU utilization for Linux and
Streamline, whereby for Streamline we vary both buffer size and moderation thresh-
old (we plot Linux for multiple values for clarity only, it does not throttle). We present
the median of 103 measurements, with upper and lower quartiles within 20% of the
presented results.

The figure shows that the daemon performs between 1.1x and 1.5x as well on top of
Streamline as on top of Linux. As expected, this factor grows with the amount of mod-
eration. Buffer size affects performance less. This is a result of hardware constraints
of the specific Intel Pro/1000 NIC that restrict buffer scalability freedom: the reception
DBuf must be at least 1MB and the transmission queue at most 1MB.

9.2.2. Video reception with mplayer. To demonstrate savings for applications that han-
dle large blocks we now present results obtained with streaming a high definition
(SXGA), high data rate (100Mbit) MPEG4 stream to a popular video client: mplayer
1.0 RC2. We disabled software decoding of the compressed stream, as the (software)
decoder would render the application computation-bound. Our results thus compare to
machines with hardware video decoders. Figure 14 summarizes the results obtained
with 1MB reception and transmission buffers (again, chosen because of NIC require-
ments). Here, too, Streamline is more efficient than Linux, between 2- and 3-fold, de-
pending on moderation threshold.

ACM Transactions on Computer Systems, Vol. 29, No. 2, Article 0, Publication date: May 2011.

0:24 Willem de Bruijn et al.

 30

 35

 40

 45

 50

 55

 60

 65

 1 10 100 1000

C
P

U
 u

til
iz

at
io

n
(%

)

throttling threshold (logscale)

linux
4MB
1MB

256kB
64kB

Fig. 13. Bind: CPU utilization at 10kreq/s Fig. 14. Mplayer: cpu load for 100Mbps sxga

Fig. 15. Tcpdump: cpu load for 200Mbps flow

 0

 100

 200

 300

 400

 500

 600

 700

 100 10000 1e+06

M
B

ps

blocksize (B)

sl
linux

Fig. 16. dd: throughput at varying blocksize

9.2.3. Network capture with tcpdump. Figure 15 shows throughput of tcpdump 3.9.8, a
popular traffic analyzer. To investigate scalability with parallel data access, we cap-
ture a moderate datastream: 200 Mbit of full-sized 1500B packets per second, gen-
erated with iperf 2.0.2. The iperf server requires 50% CPU time. When capturing
with a single listener, Streamline (‘sl 96B’) uses up hardly any extra resources, while
standard Linux (‘linux 96B’) requires 5% CPU time (10% of the application cost). Sav-
ings decrease as we run applications in parallel. When capturing full frames with 10
instances, Streamline causes a 13% CPU overhead, slightly above a single Linux in-
stance, whereas Linux saturates the CPU and drops packets. Running ten instances of
tcpdump is not a common operation, but the results are representative for any system
configuration where multiple applications access the same data, for instance network
intrusion detection and group communication using multiway pipes.

9.2.4. Disk Transfer with dd. A common server application pattern is to transfer data
from the disk (cache) to the network stack. Splicing traffic from the cache will the-
oretically increase throughput by avoiding up to two copies: on read from disk into
the application and on write to the network stack. We isolate the effects of splicing
by comparing throughput of a pure disk application. Figure 16 plots throughput of
the popular Unix dd tool while copying a 50MB file at increasing blocksizes (the ‘bs’

ACM Transactions on Computer Systems, Vol. 29, No. 2, Article 0, Publication date: May 2011.

Application-tailored I/O with Streamline 0:25

argument to the tool). Both cases write data to a regular file, therefore only one copy
is saved. The figure compares copying from the Linux pagecache to splicing from a
Streamline DBuf. Throughput gains lie between 3.8 and 23%, with 14% at the optimal
blocksize. Upper and lower quartile lie within 6% of the median of 11 runs.

9.2.5. Limits: latency with tftp+. We observed the limits of Streamline optimizations
when porting A UDP-based fileserver. tftp+ sends multiple data packets per acknowl-
edgment, at a fixed ratio defined by the client. Batching is ineffective because control is
latency bound. With small tftp blocksize (512B), so is splicing. Both systems observed
a CPU load of approximately 5% when handling a 64 Mbps (16000 pps) connection.

9.3. Native applications

Applications programmed against the native pipelines observe the highest through-
put and maximum portability, because only pipelines are fully reconfigured. We have
built four network applications directly on top of Streamline to demonstrate non-
standard I/O paths. Because these are complex applications that have no comparable
legacy counterparts, we omit full quantitative results and refer to the corresponding
application-specific publications.

SafeCard [de Bruijn et al. 2006] is a network intrusion prevention system for edge
hosts that combines full packet payload scanning, application-layer protocol filtering
(which requires traversing the entire protocol stack) and flow-based behavioral de-
tection. It is implemented as a single Streamline I/O path that can run in software,
but (to protect at full Gigabit speed with minimal overhead) also runs as a combined
software/hardware path on an Intel IXP2400 smart NIC. There, zero-copy TCP re-
assembly and pattern matching filters are offloaded to specialized stream processors.
Application-layer and behavioral detection execute as software filters, because they
are complex to write and not computationally demanding.

The token-based switch [Cristea et al. 2007] implements traffic prioritization
based on cryptographic tokens embedded in each packet. To perform the necessary
cryptographic operations at multi-Gigabit line rate, we built the switch using Stream-
line and ported it to run on a dual Intel IXP2850 network processor, which besides a
CPU embeds 32 specialized stream processors and two hardware cryptography units.
The datapath, including token insertion and verification modules, is passed as a single
I/O path. Streamline maps the filters onto the stream processors and crypto-units and
interconnects all through shared ring-buffers.

Webtap is an application-layer traffic monitor. It attaches to the network recep-
tion path, scans for HTTP requests and writes summaries to a logfile, all within the
kernel. Logging is often disabled on production webservers, because it introduces a
non-negligible performance hit. Webtap was developed in cooperation with Wikipedia
to run in their datacenters (but could not be installed due to confidentiality concerns),
reconstructing requests read-only from a switch’s mirror port. By using zero-copy TCP
reassembly and executing completely in the kernel, webtap implements a minimal I/O
path that in vitro showed to scale to the 10K requests per second [wik 2008].

Nemulator is a sophisticated detector of code injection attacks in the network based
on Nemu [Polychronakis et al. 2007]. Rather than looking for specific patterns, Nemu
detects an attacker’s code (the ‘shell code’) by treating every byte in the payload as
its potential entry point. Thus, it will execute these bytes as if they were instructions.
Typically, the execution hits an illegal instruction fairly quickly and Nemu will try
again, with the next byte and so on. It raises an alert whenever the execution behaves
in way that is indicative of shell code (such as running getPC sequences and executing
bytes that it just wrote). Clearly, executing every byte in the payload is very expen-
sive, and performance has been limited to a few tens of Mbps when checking the full

ACM Transactions on Computer Systems, Vol. 29, No. 2, Article 0, Publication date: May 2011.

0:26 Willem de Bruijn et al.

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0 2 4 6 8 10 12

M
bp

s

#cores

nemu
linear speedup

Fig. 17. Nemu scalability with cores

 0

 500

 1000

 1500

 2000

 2500

 0 2 4 6 8 10 12 14 16

M
bp

s

#nodes

nemu
linear speedup

Fig. 18. Nemu scalability with machines

stream in this way. With Streamline, we built a parallelized Nemu implementation for
multicore systems. A streamline pipeline reassembles ingress TCP traffic and divides
the connections among a fixed set of streams. Each stream is communicated by shared
memory to a single core running a Nemu process. On a single Xeon X5650, 2.67GHz,
6-core machine with two threads per core, this configuration achieved 15-20 Mbps per
thread and an overall throughput of 170Mbps with 11 processing threads. Figure 17
plots throughput with increasing numbers of cores. When spreading the task over mul-
tiple machines (replacing shared memory with UDP tunnels), the system scales to Gi-
gabit rates. Figure 18 shows that this slightly different configuration observes linear
scalability and reaches 2.5Gbps of aggregate throughput at 16 nodes.

10. RELATED WORK

Streams [Ritchie 1984] is the canonical streams and filter network stack. Click [Kohler
et al. 2000] applies S&F to routing. It operates at layer 3, where no per-session or
per-flow state has to be kept and paths are therefore static. SEDA [Welsh et al.
2001] is an application layer network server architecture that reconfigures the net-
work to scale to distributed hardware. Dryad [Isard et al. 2007] also maps a directed
graph of operations to distributed resources. It automates resource selection, but un-
like Streamline uses this for scalability and fault-tolerance in cluster environments.
The x-kernel [Hutchinson and Peterson 1991] is an OS network stack that extends
from application to devices and implements fast I/O channels between these contexts.
Scout [Montz et al. 1994] extends x-kernel with QoS support for real time applica-
tions and is available as a Linux kernel module [Bavier et al. 2002]. Only the x-kernel
and Streamline represent end-to-end operating system network stacks. Streamline dif-
ferentiates itself in from all systems in four ways: it (1) applies the Unix programming
model to network processing and thereby (2) presents a single elegant model for appli-
cation, kernel and peripheral programming, (3) minimizes memory access cost through
a novel static ring BMS and (4) automates the optimization to variation in hardware.
This is the first work to propose a layered I/O architecture with independent buffering,
processing and control systems.

Unix Network Programming

Streamline applies the Unix philosophy that “everything is a file” to the networking do-
main and the kernel and peripheral contexts. Network connections in Plan9 are also
based on filesystem nodes, but use special operations (e.g., dial) and do not expose
intermediate streams in the network stack in the manner of PipesFS [Presotto and
Winterbottom 1993]. Streamline is the first to demonstrate a high-throughput imple-
mentation of Unix primitives for network programming. Specific architectural contri-

ACM Transactions on Computer Systems, Vol. 29, No. 2, Article 0, Publication date: May 2011.

Application-tailored I/O with Streamline 0:27

butions are the PipesFS virtual filesystem for streaming I/O, the extended shell syntax,
a pure filesystem basis for sockets and Unix permissions for safe kernel programming.
Streamline is the first system that safely grants zerocopy application access to selected
network queues, bar pure capture cards.

Peripheral Programming

Scout [Montz et al. 1994] has been used in conjunction with a programmable NIC to
build an extensible layered router, Vera [Karlin and Peterson 2002]. Like Click [Kohler
et al. 2000], Vera works at the network layer. It uses layering similar to execution
spaces, but in Vera I/O paths are handcrafted. Spin [Bershad et al. 1995] moves ap-
plication logic to the kernel through the use of a safe language, extensible interfaces
and resource management. Spine [Fiuczynski et al. 1998] further applies these con-
cepts to programmable network cards. The solution is similar to Streamline’s filter
offloading to peripheral hardware [Nguyen et al. 2004], but restricts itself to single
safe extensions and NICs. Unlike these systems, Streamline extends the same program-
ming model to the peripheral. It imposes no restrictions on number of logical blocks or
streams beyond those imposed by hardware. Specific contributions include the messag-
ing network that spans across ‘execution spaces’ as a control plane and the static buffer
design that seamlessly integrate hardware descriptor rings.

Copy and Context Switch Avoidance

Streamline minimizes three causes of non-functional I/O overhead: copying, context
switching and cache misses. It reuses well known I/O optimizations, such as efficient
upcalling [Clark 1985] and inter layer processing [Clark and Tennenhouse 1990].
Copy-avoidance mechanisms generally replace copying with virtual memory (VM)
techniques such as page sharing and copy-on-write; Most such techniques work at
the granularity of single blocks. While cheaper than copying, recurrent modifications
to VM structures still contribute cost to each data transfer. Brustoloni [Brustoloni and
Steenkiste 1996] categorized previous efforts and showed them to perform roughly
identical. In the context of x-kernel, Druschel et al. describe copy avoidance ideas for
network buffers [Druschel et al. 1993] and subsequently translate these into Fbufs [Dr-
uschel and Peterson 1993]: copy-free communication paths across protection domains
that remove the per-block costs in certain situations. Paths are efficient only if map-
pings can be reused between blocks. Fbufs were later incorporated into IO-Lite [Pai
et al. 2000], a BMS that replaces copying by updates to a mutable structure of point-
ers to immutable buffers. The Streamline BMS, on the other hand, completely avoids
per-block operations by extending shared ring buffers [Govindan and Anderson 1991]
with specialization (among which indirection), compression and backward compatible
access control. Xen exchanges descriptors between domains through rings to reduce
switching, but does not allow shared data rings [Fraser et al. 2004]. Tribeca [Sul-
livan and Heybey 1998] is a stream database (a query system for continuous data
streams) that also employs indirection, but operates in a different domain (e.g., finan-
cial records) and faces different bottlenecks (disk I/O). Streamline is the first general
purpose OS I/O architecture that incurs no copy or vmm operations at runtime at all.
It demonstrates that a general purpose design based on long-lived static rings is not
just feasible, but fast. Specific contributions are the introduction of statically mapped
pointer rings (IBufs) for selective zerocopy communication across protection domains
and an implementation of splicing that is backward compatible with Unix I/O inter-
faces and therefore transparent to (legacy) applications.

ACM Transactions on Computer Systems, Vol. 29, No. 2, Article 0, Publication date: May 2011.

0:28 Willem de Bruijn et al.

Automatic Configuration

Self-optimization of operating system logic is not a new idea [Blevins and Ramamoor-
thy 1976], but application is rare in practice. Related work comprises three categories:
implementation specialization, communication optimization and code relocation. The
first uses some for of reflection to select an operation implementation at runtime. Syn-
thetix [Pu et al. 1995] specializes I/O system call implementations (e.g., read), similar
to Streamline buffers. Unlike Streamline, it also automatically chooses the best match-
ing implementation based on application invariants. Object-oriented (OO) operating
systems such as Apertos [Lea et al. 1995] and Choices [Campbell et al. 1991] use late-
binding of objects, but have no selection criterion to choose among implementations
and operate on a single object (as opposed to a composite I/O path). Amoeba [Tanen-
baum et al. 1990] is a distributed OO OS that selects optimal communication channels
based on object location. Flex [Carter et al. 1993] does the same, but also moves logic
between address spaces if this reduces communication overhead. Lipto [Druschel et al.
1992] and Kea [Veitch 1998] also allow relocation of logic between address spaces to
reduce communication overhead. EPOS [Fröhlich and Schröder-Preikschat 1999] and
Knit [Reid et al. 2000] construct operating systems from components. All presented
systems are reconfigurable, but none automate the optimization step. Ensemble [Liu
et al. 1999] automatically prunes a network stack to create a faster “bypass” version
by identifying context-dependent simplifications. Only Streamline fully automates the
translation from application specification to running implementation. It demonstrates
a method, “push processing down”, that is simple to reason about and efficient enough
for online use. Additionally, the control layer built from simple messaging and fault tol-
erant provisioning serves as an early implementation of the distributed system model
of OS design [Schapbach et al. 2008].

11. CONCLUSION

By tailoring I/O paths automatically and on demand, Streamline takes an extreme
position in the OS design space. The architecture reduces overhead from copying, con-
text switching and caching, which improves throughput of a representative set of ap-
plications between 30% and 10x over standard Linux. Furthermore, it presents an
OS-based solution to the problem of integrating special-purpose hardware.

Streamline demonstrates that extensibility does not automatically force complexity
on the end-user or application developer. Through a concise language and heuristic-
based optimization it relieves them of all technical detail. The result is practical soft-
ware that can be, and has been, directly applied to networking tasks such as intrusion
prevention, application serving and media streaming.

Acknowledgments

We are grateful to Kees Verstoep and the anonymous TOCS reviewers for commenting
on earlier drafts of the paper, Hamid Bazoobandi for helping with the evaluation of
splicing, and Tudor Zaharia for the Nemulator application.

REFERENCES

2008. Wikipedia statistics. http://en.wikipedia.org/wiki/Wikipedia:Statistics.

BAVIER, A., VOIGT, T., WAWRZONIAK, M., PETERSON, L., AND GUNNINGBERG, P. 2002. Silk: Scout paths
in the linux kernel. Tech. rep., Uppsala University.

BERSHAD, B. N., SAVAGE, S., PARDYAK, P., SIRER, E. G., FIUCZYNSKI, M., BECKER, D., EGGERS, S.,
AND CHAMBERS, C. 1995. Extensibility, safety and performance in the spin operating system. In 15th
Symposium on Operating Systems Principles. Copper Mountain, Colorado, 267–284.

BLEVINS, P. R. AND RAMAMOORTHY, C. V. 1976. Aspects of a dynamically adaptive operating system. IEEE
Trans. Comput. 25, 7, 713–725.

ACM Transactions on Computer Systems, Vol. 29, No. 2, Article 0, Publication date: May 2011.

Application-tailored I/O with Streamline 0:29

BOS, H., DE BRUIJN, W., CRISTEA, M., NGUYEN, T., AND PORTOKALIDIS, G. 2004. Ffpf: Fairly fast packet
filters. In Proceedings of OSDI’04.

BRUSTOLONI, J. C. AND STEENKISTE, P. 1996. Effects of buffering semantics on i/o performance. In Oper-
ating Systems Design and Implementation. 277–291.

CAMPBELL, R. H., ISLAM, N., JOHNSON, R., KOUGIOURIS, P., AND MADANY, P. 1991. Choices, frameworks
and refinement. In 1991 International Workshop on Object Orientation in Operating Systems. 9–15.

CARTER, J. B., FORD, B., HIBLER, M., KURAMKOTE, R., LAW, J., LEPREAU, J., ORR, D. B., STOLLER, L.,
AND SWANSON, M. 1993. FLEX: A tool for building efficient and flexible systems. In Proc. 4th IEEE
Workshop on Workstation Operating Systems.

CLARK, D. D. 1985. The structuring of systems using upcalls. In SOSP ’85: Proceedings of the tenth ACM
symposium on Operating systems principles. ACM Press, New York, NY, USA, 171–180.

CLARK, D. D. AND TENNENHOUSE, D. L. 1990. Architectural considerations for a new generation of proto-
cols. In SIGCOMM ’90: Proceedings of the ACM symposium on Communications architectures & proto-
cols.

CLEARY, J., DONNELLY, S., GRAHAM, I., MCGREGOR, A., AND PEARSON, M. 2000. Design principles for
accurate passive measurement. In Proceedings of PAM. Hamilton, New Zealand.

CRISTEA, M.-L., GOMMANS, L., XU, L., AND BOS, H. 2007. The token based switch: Per-packet access
authorisation to optical shortcuts. In Networking. Lecture Notes in Computer Science Series, vol. 4479.

DE BRUIJN, W. 2010. Adaptive operating system design for high throughput i/o. Ph.D. thesis, Vrije Univer-
siteit Amsterdam.

DE BRUIJN, W. AND BOS, H. 2008a. Beltway buffers: Avoiding the os traffic jam. In INFOCOM 2008.

DE BRUIJN, W. AND BOS, H. 2008b. Pipesfs: Fast linux i/o in the unix tradition. ACM SigOps Operating
Systems Review 42, 5. Special Issue on R&D in the Linux Kernel.

DE BRUIJN, W., SLOWINSKA, A., VAN REEUWIJK, K., HRUBY, T., XU, L., AND BOS, H. 2006. Safecard: a
gigabit ips on the network card. In Proceedings of 9th International Symposium on Recent Advances in
Intrusion Detection (RAID’06). Hamburg, Germany.

DRUSCHEL, P., ABBOTT, M. B., PAGALS, M. A., AND PETERSON, L. L. 1993. Network subsystems design.
IEEE Network 7, 4, 8–17.

DRUSCHEL, P. AND PETERSON, L. L. 1993. Fbufs: A high-bandwidth cross-domain transfer facility. In Sym-
posium on Operating Systems Principles. 189–202.

DRUSCHEL, P., PETERSON, L. L., AND HUTCHINSON, N. C. 1992. Beyond micro-kernel design: Decoupling
modularity and protection in Lipto. In Proc. 12th Int. Conf. on Distributed Computing Systems. 512–520.

FEDOROVA, A., SELTZER, M., SMALL, C., AND NUSSBAUM, D. 2004. Throughput-oriented scheduling on
chip multithreading systems. Tech. Rep. TR-17-04, Harvard University. August.

FIUCZYNSKI, M. E., MARTIN, R. P., OWA, T., AND BERSHAD, B. N. 1998. Spine: a safe programmable and
integrated network environment. In EW 8: Proceedings of the 8th ACM SIGOPS European workshop on
Support for composing distributed applications. ACM Press, New York, NY, USA, 7–12.

FRASER, K., H, S., NEUGEBAUER, R., PRATT, I., WARFIELD, A., AND WILLIAMSON, M. 2004. Safe hard-
ware access with the xen virtual machine monitor. In Proceedings of OASIS 2004.

FRÖHLICH, A. A. AND SCHRÖDER-PREIKSCHAT, W. 1999. Tailor-made operating systems for embedded
parallel applications. In Proc. 4th IPPS/SPDP Workshop on Embedded HPC Systems and Applications.

GOVINDAN, R. AND ANDERSON, D. P. 1991. Scheduling and ipc mechanisms for continuous media. In Pro-
ceedings of 13th ACM Symposium on Operating Systems Principles. ACM SIGOPS, 68–80.

HRUBY, T., VAN REEUWIJK, K., AND BOS, H. 2007. Ruler: high-speed packet matching and rewriting on
npus. In ANCS ’07: Proceedings of the 3rd ACM/IEEE Symposium on Architecture for networking and
communications systems. ACM, New York, NY, USA, 1–10.

HUTCHINSON, N. C. AND PETERSON, L. L. 1991. The x-kernel: An architecture for implementing network
protocols. IEEE Transactions on Software Engineering 17, 1, 64–76.

ISARD, M., BUDIU, M., YU, Y., BIRRELL, A., AND FETTERLY, D. 2007. Dryad: Distributed data-parallel
programs from sequential building blocks. In Proceedings of Eurosys’07.

JACOBSON, V. AND FELDERMAN, B. 2006. A modest proposal to help speed up & scale up the linux network-
ing stack. http://www.linux.org.au/conf/2006/abstract8204.html?id=382.

KARLIN, S. AND PETERSON, L. 2002. Vera: an extensible router architecture. Computer Networks (Amster-
dam, Netherlands: 1999) 38, 3, 277–293.

KOHLER, E., MORRIS, R., CHEN, B., JANNOTTI, J., AND KAASHOEK, M. F. 2000. The click modular router.
ACM Transactions on Computer Systems 18, 3, 263–297.

ACM Transactions on Computer Systems, Vol. 29, No. 2, Article 0, Publication date: May 2011.

0:30 Willem de Bruijn et al.

LEA, R., YOKOTE, Y., AND ITOH, J.-I. 1995. Adaptive operating system design using reflection. In HOTOS
’95: Proceedings of the Fifth Workshop on Hot Topics in Operating Systems (HotOS-V). IEEE Computer
Society, Washington, DC, USA, 95.

LIU, X., KREITZ, C., VAN RENESSE, R., HICKEY, J., HAYDEN, M., BIRMAN, K. P., AND CONSTABLE, R. L.
1999. Building reliable, high-performance communication systems from components. In Proc. of 17th
ACM Symposium on Operating Systems Principles. 80–92.

MCCANNE, S. AND JACOBSON, V. 1993. The BSD Packet Filter: A new architecture for user-level packet
capture. In Proc. 1993 Winter USENIX conference. San Diego, Ca.

MCVOY, L. 1998. The splice I/O model. www.bitmover.com/lm/papers/splice.ps.

MONTZ, A. B., MOSBERGER, D., O’MALLEY, S. W., PETERSON, L. L., PROEBSTING, T. A., AND HARTMAN,
J. H. 1994. Scout: A communications-oriented operating system. In Operating Systems Design and Im-
plementation.

NAPI. Linux napi, or ”new” network api. Documentation at http://www.linuxfoundation.org/en/Net:
NAPI.

NGUYEN, T., CRISTEA, M., DE BRUIJN, W., AND BOS, H. 2004. Scalable network monitors for high-speed
links: a bottom-up approach. In Proceedings of IPOM’04.

PAI, V. S., DRUSCHEL, P., AND ZWAENEPOEL, W. 2000. Io-lite: a unified i/o buffering and caching system.
ACM Transactions on Computer Systems 18, 1, 37–66.

PASQUALE, J., ANDERSON, E. W., AND MULLER, K. 1994. Container shipping: Operating system support
for i/o-intensive applications. IEEE Computer 27, 3, 84–93.

POLYCHRONAKIS, M., ANAGNOSTAKIS, K. G., AND MARKATOS, E. P. 2007. Emulation-based detection of
non-self-contained polymorphic shellcode. In Recent Advances in Intrusion Detection, 10th International
Symposium, RAID 2007. 87–106.

PRESOTTO, D. AND WINTERBOTTOM, P. 1993. The organization of networks in plan 9. In Proceedings of the
Winter 1993 USENIX Conference. Usenix.

PU, C., AUTREY, T., BLACK, A., CONSEL, C., COWAN, C., INOUYE, J., KETHANA, L., WALPOLE, J., AND

ZHANG, K. 1995. Optimistic incremental specialization: Streamlining a commercial operating system.
In Proc. 15th ACM Symposium on Operating Systems Principles.

REID, A., FLATT, M., STOLLER, L., LEPREAU, J., AND EIDE, E. 2000. Knit: component composition for
systems software. In OSDI’00. USENIX Association, 24–24.

RITCHIE, D. M. 1984. A stream input-output system. AT&T Bell Laboratories Technical Journal 63, 8,
1897–1910.

SCHAPBACH, A., PETER, S., BAUMANN, A., ROSCOE, T., BARHAM, P., HARRIS, T., AND ISAACS, R. 2008.
Embracing diversity in the barrelfish manycore operating system. In Proceedings of the Workshop on
Managed Many-Core Systems (MMCS’08).

SERMULINS, J., THIES, W., RABBAH, R., AND AMARASINGHE, S. 2005. Cache aware optimization of stream
programs. SIGPLAN Not. 40, 7, 115–126.

SULLIVAN, M. AND HEYBEY, A. 1998. Tribeca: A system for managing large databases of network traffic.
In Proceedings of USENIX 98. 13–24.

SUN MICROSYSTEMS, I. 2005. STREAMS Programming Guide. Sun Microsystems, Inc.

TANENBAUM, A. S., VAN RENESSE, R., VAN STAVEREN, H., SHARP, G. J., AND MULLENDER, S. J. 1990.
Experiences with the amoeba distributed operating system. Commun. ACM 33, 12, 46–63.

TRAW, C. B. S. AND SMITH, J. M. 1993. Hardware/software organization of a high-performance ATM host
interface. IEEE JSAC (Special Issue on High Speed Computer/Network Interfaces) 11, 2, 240–253.

VEITCH, A. C. 1998. A dynamically reconfigurable and extensibe operating system. Ph.D. thesis, Univ. of
British Columbia.

WELSH, M., CULLER, D. E., AND BREWER, E. A. 2001. Seda: An architecture for well-conditioned, scalable
internet services. In Symposium on Operating Systems Principles. 230–243.

WULF, W. A. AND MCKEE, S. A. 1995. Hitting the memory wall: Implications of the obvious. Computer
Architecture News 23, 1, 20–24.

Received Month Year; revised Month Year; accepted Month Year

ACM Transactions on Computer Systems, Vol. 29, No. 2, Article 0, Publication date: May 2011.

